199 resultados para laser energy
Resumo:
We have demonstrated the promising radiation pressure acceleration (RPA) mechanism of laser-driven ion acceleration at currently achievable laser and target parameters through a large number of two-dimensional particle-in-cell simulations and experiments. High-density monoenergetic ion beams with unprecedented qualities such as narrow-peaked spectrum, lower-divergence and faster energy-scaling are obtained, compared with the conventional target normal sheath acceleration. The key condition for stable RPA from thin foils by intense circularly polarized lasers has been identified, under which the stable RPA regime can be extended from ultrahigh intensities > 10(22) W cm(-2) to a currently accessible range 10(20)-10(21) W cm(-2). The dependences of the RPA mechanism on laser polarization, intensity and on the target composition and areal density have been studied.
Resumo:
The transverse filamentation of beams of fast electrons transported in solid targets irradiated by ultraintense (5 x 10(20) W cm(-2)), picosecond laser pulses is investigated experimentally. Filamentation is diagnosed by measuring the uniformity of a beam of multi-MeV protons accelerated by the sheath field formed by the arrival of the fast electrons at the rear of the target, and is investigated for metallic and insulator targets ranging in thickness from 50 to 1200 mu m. By developing an analytical model, the effects of lateral expansion of electron beam filaments in the sheath during the proton acceleration process is shown to account for measured increases in proton beam nonuniformity with target thickness for the insulating targets.
Resumo:
Laser-driven proton and ion acceleration is an area of increasing research interest given the recent development of short pulse-high intensity lasers. Several groups have reported experiments to understand whether a laser-driven beam can be applied for radiobiological purposes and in each of these, the method to obtain dose and spectral analysis was slightly different. The difficulty with these studies is that the very large instantaneous dose rate is a challenge for commonly used dosimetry techniques, so that other more sophisticated procedures need to be explored. This paper aims to explain a method for obtaining the energetic spectrum and the dose of a laser-driven proton beam irradiating a cell dish used for radiobiology studies. The procedure includes the use of a magnet to have charge and energy separation of the laser-driven beam, Gafchromic films to have information on dose and partially on energy, and a Monte Carlo code to expand the measured data in order to obtain specific details of the proton spectrum on the cells. Two specific correction factors have to be calculated: one to take into account the variation of the dose response of the films as a function of the proton energy and the other to obtain the dose to the cell layer starting from the dose measured on the films. This method, particularly suited to irradiation delivered in a single laser shot, can be applied in any other radiobiological experiment performed with laser-driven proton beams, with the only condition that the initial proton spectrum has to be at least roughly known. The method was tested in an experiment conducted at Queen's University of Belfast using the TARANIS laser, where the mean energy of the protons crossing the cells was between 0.9 and 5 MeV, the instantaneous dose rate was estimated to be close to 10(9) Gy s(-1) and doses between 0.8 and 5 Gy were delivered to the cells in a single laser shot. The combination of the applied corrections modified the initial estimate of dose by up to 40%.
Resumo:
Thomson scattering is one of the most powerful diagnostic tools for plasma characterization, and it has been applied to a variety of plasmas. It is a nonintrusive technique, and the interpretation of the signal is relatively simple. However, this method has not been widely applied to low-temperature laser-ablated plasmas. Raman satellites have been observed in the scattering spectrum from a Mg laser-ablated plasma, giving this diagnostic the potential to be also used in density quantification of metastable states in plasmas.
Resumo:
Very collimated bunches of high energy electrons have been produced by focusing super-intense femtosecond laser pulses in submillimeter under-dense plasmas. The density of the plasma, preformed with the laser exploding-foil technique, was mapped using Nomarski interferometry. The electron beam was fully characterized: up to 10(9) electrons per shot were accelerated, most of which in a beam of aperture below 10(-3) sterad, with energies up to 40 MeV. These measurements, which are well modeled by three-dimensional numerical simulations, validate a reliable method to generate ultrashort and ultracollimated electron bunches. (C) 2002 American Institute of Physics.
Resumo:
The propagation of a 1-ps laser pulse at intensities exceeding 10(19) Wcm(-2) in a low-density plasma channel was experimentally tested. The channel was produced by a lower intensity preceding pulse of the same duration. Plasma electrons were accelerated during the propagation of the main pulse, and high energy gamma -ray detectors were used to detect their bremsstrahlung emission. The gamma -ray yield was studied for different channel conditions, by varying the delay between the channel forming pulse and the high intensity pulse. These results are correlated with the interferograms of the propagation region into the plasma.
Resumo:
Filamentary ionization tracks have been observed via optical probing inside Al-coated glass targets after the interaction of a picosecond 20-TW laser pulse at intensities above 10(19) W/cm(2). The tracks, up to 700 mu m in length and between 10 and 20 mu m in width, originate from the focal spot region of the laser beam. Simulations performed with 3D particle-in-cell and 2D Fokker-Planck hybrid codes indicate that the observations are consistent with ionization induced in the glass target by magnetized, collimated beams of high-energy electrons produced during the laser interaction.
Resumo:
The characteristics of an extreme-ultraviolet (XUV) continuum light source and its application to a dual-laser plasma (DLP) photoabsorption experiment are described. The continuum emitting plasma was formed by focusing a 7 ps, 248 nm, 15 mJ laser pulse onto a number of selected targets known to be good XUV continuum emitters (Sm, W, Au and Pb), while the second absorbing plasma was produced by a 15 ns, 1064 nm, 300 mi pulse. The duration of the continuum emission for these plasmas has a mean value of similar to 150 ps, but depends on both the target material and the picosecond laser pulse energy. Using this picosecond DLP set-up we have been able to measure the photoabsorption spectrum of an actinide ion (thorium) for the first time.
Resumo:
Saturation of a low pump energy x-ray laser utilizing a transient inversion mechanism on the 3p-3s transition at 32.63 nm in Ne-like Ti has been demonstrated. A close to saturation amplification was simultaneously achieved for the 3d-3p, J=1-->1 transition at 30.15 nm. Small signal effective transient gain coefficients of g similar to 46 and similar to 35 cm(-1) and gain-length products of 16.7 and 16.9 for these lines were obtained. Experiments demonstrate that it is possible to achieve saturated laser action in a transient regime with Ne-like Ti for a pump energy as low as similar to 5 J.
Resumo:
We report the first demonstration of saturation in a Ni-like x-ray laser, specifically Ni-like Ag x-ray laser at 14 nm. Using high-resolution spatial imaging and angularly resolved streaking techniques, the output source size as well as the time history, divergence, energy, and spatial profile of the output beam have been fully characterized. The output intensity of the Ag laser was measured to be about 70 GWcm(-2) The narrow divergence, short pulse duration, high efficiency, and high brightness of the Ag laser make it an ideal candidate for many x-ray laser applications.
Resumo:
A saturated nickel-like samarium x-ray laser beam at 7 nanometers has been demonstrated with an output energy of 0.3 millijoule in 50-picosecond pulses, demonstrating that saturated operation of a laser at wavelengths shorter than 10 nanometers can be achieved. The narrow divergence, short wavelength, short pulse duration, high efficiency, and high brightness of this samarium laser make it an ideal candidate for many x-ray laser applications.
Resumo:
We report on measurements of the saturated single frequency output of a Ge XXIII x-ray laser on the J=0-->1 transition at 19.6 nm from a refraction compensating double target driven by 150 J of energy from 75-ps Nd-glass laser pulses. The 19.6-nm line completely dominated the laser output. The output energy was measured to be 0.9 mJ in a beam of 6.6x30 mrad(2) divergence, corresponding to a conversion efficiency of 6 x 10(-6).
Resumo:
We report a study of the effect of prepulses on XUV lasing of Ne-like germanium for an irradiation geometry where approximate to 20 mm long germanium slab targets were irradiated at approximate to 1.6 x 10(13) W cm(-2) using approximate to 0.7 ns (1.06 mu m) pulses from the VULCAN glass laser. Prepulses were generated at fractional power levels of approximate to 2 x 10(-4) (low) and approximate to 2 x 10(-2) (high) and arrived on target 5 and 3.2 ns respectively in advance of the main heating pulse, For both the low and high prepulses the output of the 3p-3s, J = 0-1, line at 19.6 nm was enhanced such that the peak radiant density (J/st) for this line became greater than that for the normally stronger J = 2-1 lines at 23.2 and 23.6 nm. The J = 0-1 line, whose FWHM duration was reduced from approximate to 450 ps to approximate to 100 ps, delivered approximate to 6 x more power (W) than the average for the combined J = 2-1 lines, whose FWHM duration was approximate to 500 ps for both levels of prepulse, The higher prepulse was more effective, yielding approximate to 2 x more radiant density and approximate to 7 x more power on both the J = 0-1 and J = 2-1 transitions compared to the low prepulse case, The most dramatic observation overall was the approximate to 40 x increase of power in the J = 0-1 line for the high prepulse (approximate to 2%) case compared with the zero prepulse case. These observations, coupled with measurements of beam divergence and beam deviation through refractive bending, as well as general agreement with modelling, lead us to conclude that, for germanium, the main influence of the prepulse is (a) to increase the energy absorbed from the main pulse, (b) to increase the volume of the gain zone and (c) to relax the plasma density gradients, particularly in the J = 0-1 gain zone.
Resumo:
Characteristics of the 3p-3s amplified spontaneous emission from Ne-like Ge plasma columns, generated by ablation from massive targets, have been studied in detail. In particular, the gain coefficients of the J = 2-1 lines at 23.2 and 23.6 nm have been measured as a function of incident intensity for a 1.05-mu-m wavelength pump laser beam. For 100-mu-m wide stripe targets and a fixed energy pump laser the maximum gain length product is achieved at an irradiance of