146 resultados para language activation
Resumo:
The physical effect of high concentrations of reversibly dissolved SO2 on [C(2)mim][NTf2] was examined using cyclic voltammetry, chronoamperometry, and ESR spectroscopy. Cyclic voltammetry of the oxidation of solutions of ferrocene, N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD), and chloride in the room temperature ionic liquid (RTIL) 1-ethyl-3-methylimidazolium bis(trifluoromethanesufonyl)imide ([C(2)mim][NTf2]) reveals an increase in limiting current of each species corresponding to the addition of increasing concentrations of sulfur dioxide. Quantitative chronoamperometry reveals an increase in each species' diffusion coefficient with SO2 concentration. When chronoamperometric data were obtained for ferrocene in [C(2)mim][NTf2] at a range of temperatures, the translational diffusion activation energy (29.0 +/- 0.5 kJ mol(-1)) was found to be in good agreement with previous studies. Adding SO2 results in apparent near-activationless translational diffusion. A significant decrease in the activation energy of rotational diffusion with the SO2 saturation of a 2,2,6,6-tetramethyl-1-piperidinyloxyl (TEMPO) solution in [C(2)mim][NTf2] (29.9 +/- 2.0 to 7.7 +/- 5.3 kJ mol(-1)) was observed using electron spin resonance (ESR) spectroscopy. The reversible physical absorption Of SO2 by [C(2)mim][NTf2] should have no adverse effect on the ability of that ionic liquid to be employed as a solvent in an electrochemical gas sensor, and it is possible that the SO2-mediated reduction of RTIL viscosity could have intrinsic utility.
Resumo:
We present a practical approach to Natural Language Generation (NLG) for spoken dialogue systems. The approach is based on small template fragments (mini-templates). The system’s object architecture facilitates generation of phrases across pre-defined business domains and registers, as well as into different languages. The architecture simplifies NLG in well-understood application contexts, while providing the flexibility for a developer and for the system, to vary linguistic output according to dialogue context, including any intended affective impact. Mini-templates are used with a suite of domain term objects, resulting in an NLG system (MINTGEN – MINi-Template GENerator) whose extensibility and ease of maintenance is enhanced by the sparsity of information devoted to individual domains. The system also avoids the need for specialist linguistic competence on the part of the system maintainer.
Resumo:
This paper outlines the design and development of a Java-based, unified and flexible natural language dialogue system that enables users to interact using natural language, e.g. speech. A number of software development issues are considered with the aim of designing an architecture that enables different discourse components to be readily and flexibly combined in a manner that permits information to be easily shared. Use of XML schemas assists this component interaction. The paper describes how a range of Java language features were employed to support the development of the architecture, providing an illustration of how a modern programming language makes tractable the development of a complex dialogue system.
Resumo:
This exploratory study was undertaken to investigate the mechanisms that contributed to improvements in upper limb function following a novel training program. Surface electromyography (EMG) was used to examine training-induced changes in the pattern of triceps and biceps activation during reaching tasks in stroke survivors with severe paresis in the chronic stage of recovery. The EMG data were obtained in the context of a single blind randomised clinical trial conducted with 42 stroke survivors with minimal upper limb muscle activity and who were more than 6 months post-stroke. Of the 33 participants who completed the study, 10 received training of reaching using a non-robotic upper limb training device, the SMART Arm, with EMG triggered functional electrical stimulation (EMG-stim), 13 received training of reaching using the SMART Arm alone, and 10 received no intervention. Each intervention group engaged in 12 1-h training sessions over a 4-week period. Clinical and laboratory measures of upper limb function were administered prior to training (0 weeks), at completion (4 weeks) and 2 months (12 weeks) after training. The primary outcome measure was 'upper arm function' which is Item 6 of the Motor Assessment Scale (MAS). Laboratory measures consisted of two multijoint reaching tasks to assess 'maximum isometric force' and 'maximum distance reached'. Surface EMG was used to monitor triceps brachii and biceps brachii during the two reaching tasks. To provide a comparison with normal values, seven healthy adults were tested on one of the reaching tasks according to the same procedure. Study findings demonstrated a statistically significant improvement in upper limb function for stroke participants in the two training groups compared to those who received no training however no difference was found between the two training groups. For the reaching tasks, all stroke participants, when compared to normal healthy adults, exhibited lower triceps and biceps activation and a lower ratio of triceps to biceps activation. Following training, stroke participants demonstrated increased triceps activation and an increased ratio of triceps to biceps activation for the task that was trained. Better performance was associated with greater triceps activation and a higher ratio of triceps to biceps activation. The findings suggest that increased activation of triceps as an agonist and an improved coordination between triceps and biceps could have mediated the observed changes in arm function. The changes in EMG activity were small relative to the changes in arm function indicating that factors, such as the contribution of other muscles of reaching, may also be implicated.