233 resultados para key replacement attack


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Little is known about the origin of basal-like breast cancers, an aggressive disease that is highly similar to BRCA1-mutant breast cancers. p63 family proteins that are structurally related to the p53 suppressor protein are known to function in stem cell regulation and stratified epithelia development in multiple tissues, and p63 expression may be a marker of basal-like breast cancers. Here we report that Delta Np63 isoforms of p63 are transcriptional targets for positive regulation by BRCA1. Our analyses of breast cancer tissue microarrays and BRCA1-modulated breast cancer cell lines do not support earlier reports that p63 is a marker of basal-like or BRCA1 mutant cancers. Nevertheless, we found that BRCA1 interacts with the specific p63 isoform Delta Np63 gamma along with transcription factor isoforms AP-2 alpha and AP-2 gamma. BRCA1 required Delta Np63 gamma and AP-2 gamma to localize to an intronic enhancer region within the p63 gene to upregulate transcription of the Delta Np63 isoforms. In mammary stem/progenitor cells, siRNA- mediated knockdown of Delta Np63 expression resulted in genomic instability, increased cell proliferation, loss of DNA damage checkpoint control, and impaired growth control. Together, our findings establish that transcriptional upregulation of Delta Np63 proteins is critical for BRCA1 suppressor function and that defects in BRCA1-Delta Np63 signaling are key events in the pathogenesis of basal-like breast cancer. Cancer Res; 71( 5); 1933-44. (c) 2011 AACR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CCN3, a founding member of the CCN family of growth regulators, was linked with hematology in 2003(1) when it was detected in human serum. CCN3 is expressed and secreted by hematopoietic progenitor cells in normal bone marrow. CCN3 acts through the core stem cell signalling pathways including Notch and Bone Morphogenic Protein, connecting CCN3 with the modulation of self-renewal and maturation of a number of cell lineages including hematopoietic, osteogenic and chondrogenic. CCN3 expression is disrupted in Chronic Myeloid Leukemia as a consequence of the BCR-ABL oncogene and allows the leukemic clone to evade growth regulation. In contrast, naive cord blood progenitors undergo enhanced clonal expansion in response to CCN3. Altered CCN3 expression is associated with numerous solid tumors including glioblastoma, melanoma. adrenocortical tumours, prostate cancer and bone malignancies including osteosarcoma. Mature CCN3 protein has five distinct modules and truncated protein variants with altered function are found in many cancers. Regulation by CCN3 is therefore cell type and isoform specific. CCN3 has emerged as a key player in stem cell regulation, hematopoiesis and a crucial component within the bone marrow microenvironment. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To understand the molecular etiology of osteosarcoma, we isolated and characterized a human osteosarcoma cell line (OS1). OS1 cells have high osteogenic potential in differentiation induction media. Molecular analysis reveals OS1 cells express the pocket protein pRB and the runt-related transcription factor Runx2. Strikingly, Runx2 is expressed at higher levels in OS1 cells than in human fetal osteoblasts. Both pRB and Runx2 have growth suppressive potential in osteoblasts and are key factors controlling competency for osteoblast differentiation. The high levels of Runx2 clearly suggest osteosarcomas may form from committed osteoblasts that have bypassed growth restrictions normally imposed by Runx2. Interestingly, OS1 cells do not exhibit p53 expression and thus lack a functional p53/p21 DNA damage response pathway as has been observed for other osteosarcoma cell types. Absence of this pathway predicts genomic instability and/or vulnerability to secondary mutations that may counteract the anti-proliferative activity of Runx2 that is normally observed in osteoblasts. We conclude OS1 cells provide a valuable cell culture model to examine molecular events that are responsible for the pathologic conversion of phenotypically normal osteoblast precursors into osteosarcoma cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:


Lip separation is one of the primary sources of inlet distortion, which can result in a loss in fan stability. High angles of incidence are one of several critical causes of lip separation. There have been many studies into inlet performance at high incidence, including the resulting distortion levels when lip separation occurs. However, the vast majority of these investigations have been carried out experimentally, with little in the way of computational results for inlet performance at high incidence. The flow topology within an inlet when lip separation has occurred is also not well understood. This work aims to demonstrate a suitable model for the prediction of inlet flows at high incidence using ANSYS CFX, looking at both the performance of the inlet and the separated flow topology within the inlet. The attenuating effect of the fan is also investigated, with particular emphasis on the flow redistribution ahead of the fan. The results show that the model used is suitable for predicting inlet performance in adverse operating conditions, showing good agreement with experimental results. In addition, the attenuation of the distortion by the fan is also captured by the numerical model.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Short stories

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One possible loosening mechanism of the femoral component in total hip replacement is fatigue cracking of the cement mantle. A computational method capable of simulating this process may therefore be a useful tool in the preclinical evaluation of prospective implants. In this study, we investigated the ability of a computational method to predict fatigue cracking in experimental models of the implanted femur construct. Experimental specimens were fabricated such that cement mantle visualisation was possible throughout the test. Two different implant surface finishes were considered: grit blasted and polished. Loading was applied to represent level gait for two million cycles. Computational (finite element) models were generated to the same geometry as the experimental specimens, with residual stress and porosity simulated in the cement mantle. Cement fatigue and creep were modelled over a simulated two million cycles. For the polished stem surface finish, the predicted fracture locations in the finite element models closely matched those on the experimental specimens, and the recorded stem displacements were also comparable. For the grit blasted stem surface finish, no cement mantle fractures were predicted by the computational method, which was again in agreement with the experimental results. It was concluded that the computational method was capable of predicting cement mantle fracture and subsequent stem displacement for the structure considered. (C) 2006 Elsevier Ltd. All rights reserved.