148 resultados para hadron spectrum
Distributed Switch-and-Stay Combining in Cognitive Relay Networks under Spectrum Sharing Constraints
Resumo:
Cognitive radio network is defined as an intelligent wireless communication network that should be able to adaptively reconfigure its communication parameters to meet the demands of the transmission network or the user. In this context one possible way to utilize unused licensed spectrum without interfering with incumbent users is through spectrum sensing. Due to channel uncertainties, single cognitive (opportunistic) user cannot make a decision reliably and hence collaboration among multiple users is often required. Here collaboration among large number of users tends to increase power consumption and introduces large communication overheads. In this paper, the number of collaborating users is optimized in order to maximize the probability of detection for any given power budget in a cognitive radio network, while satisfying constraints on the false alarm probability. We show that for the maximum probability of detection, collaboration of only a subset of available opportunistic users is required. The robustness of our proposed spectrum sensing algorithm is also examined under flat Rayleigh fading and AWGN channel conditions.
Resumo:
Spectrum efficient multiple relay selection strategy for two-hop cooperative decode-and-forward relay networks is proposed for the case when the sum power among all relay nodes is limited. Based on the outage-multiplexing tradeoff (OMT), the number of active relay nodes is maximized so that the resulting sum-relay capacity is maximized while each relay outage capacity remains greater than or equal to a certain target level. Using asymptotic analysis, it is shown that for the proposed OMT relaying strategy the associated multiplexing and cooperative system diversity gains improve proportionally with the number of active relay nodes. It is also shown analytically that the proposed OMT relaying outperforms the conventional opportunistic single relaying in terms of the sum-relay capacity.
Resumo:
We examine the impact of primary and secondary interference on opportunistic relaying in cognitive spectrum sharing networks. In particular, new closed-form exact and asymptotic expressions for the outage probability of cognitive opportunistic relaying are derived over Rayleigh and Nakagami-m fading channels. Our analysis presents revealing insights into the diversity and array gains, diversity-multiplexing tradeoff, impact of primary transceivers' positions, and the optimal position of relays. We highlight that cognitive opportunistic relaying achieves the full diversity gain which is a product of the number of relays and the minimum Nakagami-m fading parameter in the secondary network. Furthermore, we confirm that the diversity gain reduces to zero when the peak interference constraint in the secondary network is proportional to the interference power from the primary network.