129 resultados para femtosecond pulses
Resumo:
We demonstrate a new high-order harmonic generation mechanism reaching the "water window" spectral region in experiments with multiterawatt femtosecond lasers irradiating gas jets. A few hundred harmonic orders are resolved, giving mu J/sr pulses. Harmonics are collectively emitted by an oscillating electron spike formed at the joint of the boundaries of a cavity and bow wave created by a relativistically self-focusing laser in underdense plasma. The spike sharpness and stability are explained by catastrophe theory. The mechanism is corroborated by particle-in-cell simulations.
Resumo:
A quantitative study of refractive whole beam defocusing and small scale breakup induced by optical ionization of subpicosecond and picosecond, 0.25 and 1 mu m, laser pulses in gas-jet targets at densities above 1 x 10(19) cm(-3) has been carried out. A significant reduction of the incident laser intensity was observed due to refraction from ionization-induced density gradients. The level of refraction measured with optical probing correlated well with the fraction of energy transmitted through the plasma. The numerical and analytical models were found to agree well with experimental observations.
Resumo:
The interaction of a high-intensity laser pulse with a plasma density channel preformed in a gas jet target has been studied. At neutral densities below 3.0 X 10(19) cm(-3) a strong interaction between the pulse and the channel walls was observed, there was clear evidence of pulse confinement, and the laser irradiance was significantly increased compared to an interaction with neutral gas. At higher gas densities, however, the radial uniformity and length of the channel were both found to be adversely affected by refractive defocusing of the prepulse used to generate the channel.
Resumo:
The interaction of an ultraintense, 30-fs laser pulse with a preformed plasma was investigated as a method of producing a beam of high-energy electrons. We used thin foil targets that are exploded by the laser amplified spontaneous emission preceding the main pulse. Optical diagnostics show that the main pulse interacts with a plasma whose density is well below the critical density. By varying the foil thickness, we were able to obtain a substantial emission of electrons in a narrow cone along the laser direction with a typical energy well above the laser ponderomotive potential. These results are explained in terms of wake-field acceleration.
Resumo:
Laser induced acoustic desorption (LIAD) has been used for the first time to study the parent ion production and fragmentation mechanisms of a biological molecule in an intense femtosecond (fs) laser field. The photoacoustic shock wave generated in the analyte substrate (thin Ta foil) has been simulated using the hydrodynamic HYADES code, and the full LIAD process has been experimentally characterised as a function of the desorption UV-laser pulse parameters. Observed neutral plumes of densities > 10(9) cm(-3) which are free from solvent or matrix contamination demonstrate the suitability and potential of the source for studying ultrafast dynamics in the gas phase using fs laser pulses. Results obtained with phenylalanine show that through manipulation of fundamental femtosecond laser parameters (such as pulse length, intensity and wavelength), energy deposition within the molecule can be controlled to allow enhancement of parent ion production or generation of characteristic fragmentation patterns. In particular by reducing the pulse length to a timescale equivalent to the fastest vibrational periods in the molecule, we demonstrate how fragmentation of the molecule can be minimised whilst maintaining a high ionisation efficiency.
Resumo:
The recent adiabatic saddle-point method of Shearer et al. [ Phys. Rev. A 84 033409 (2011)] is applied to study strong-field photodetachment of H- by few-cycle linearly polarized laser pulses of frequencies near the two-photon detachment threshold. The behavior of the saddle points in the complex-time plane for a range of laser parameters is explored. A detailed analysis of the influence of laser intensities [(2×1011)–(6.5 × 1011) W/cm2], midinfrared laser wavelengths (1800–2700 nm), and various values of the carrier envelope phase (CEP) on (i) three-dimensional probability detachment distributions, (ii) photoangular distributions (PADs), (iii) energy spectra, and (iv) momentum distributions are presented. Examination of the probability distributions and PADs reveal main lobes and jetlike structures. Bifurcation phenomena in the probability distributions and PADs are also observed as the wavelength and intensity increase. Our simulations show that the (i) probability distributions, (ii) PADs, and (iii) energy spectra are extremely sensitive to the CEP and thus measuring such distributions provides a useful tool for determining this phase. The symmetrical properties of the electron momentum distributions are also found to be strongly correlated with the CEP and this provides an additional robust method for measuring the CEP of a laser pulse. Our calculations further show that for a three-cycle pulse inclusion of all eight saddle points is required in the evaluation of the transition amplitude to yield an accurate description of the photodetachment process. This is in contrast to recent results for a five-cycle pulse.
Resumo:
We present data on emission of K-shell radiation from Ti foils irradiated with subpicosecond pulses of second harmonic radiation (527 nm) from the TARANIS laser system at intensities of up to 1018 Wcm-2. The data are used to demonstrate that a resonance absorption type mechanism is responsible for absorption of the laser light and to estimate fast electron temperatures of 30–60 keV that are in broad agreement with expectation from models of absorption for a steep density gradient. Data taken with resin-backed targets are used to demonstrate clear evidence of electron refluxing even at the modest fast electron temperatures inferred.
Resumo:
We present experimental studies on ion acceleration from ultrathin diamondlike carbon foils irradiated by ultrahigh contrast laser pulses of energy 0.7 J focused to peak intensities of 5×1019 W/cm2. A reduction in electron heating is observed when the laser polarization is changed from linear to circular, leading to a pronounced peak in the fully ionized carbon spectrum at the optimum foil thickness of 5.3 nm. Two-dimensional particle-in-cell simulations reveal that those C6+ ions are for the first time dominantly accelerated in a phase-stable way by the laser radiation pressure.