144 resultados para dopamine D3 receptors


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: There are reports with conflicting results on the expression of toll-like receptors (TLRs) in trauma patients. In addition, these studies analyzed TLR expression only at patients hospital admission but not later when complications usually arise. Objectives: To analyze the surface expression of TLR2 and TLR4 on circulating monocytes from trauma patients during the hospitalization period and to correlate this with cytokine production after stimulation with TLR2 and TLR4 agonists. The phagocytic capacity of monocytes was analyzed at the same time points of TLR expression analysis; to correlate these molecular findings with the presence or absence of infections. Methods: Prospective and observational study from June 2005 to June 2007. In all analysis, a control group composed of healthy subjects was included. Results: We studied 70 trauma patients admitted to the intensive care unit (ICU) of a tertiary hospital, and 30 healthy volunteers. Blood samples were collected at hospital admission, on day 7 and 14. Forty-four patients (63%) developed at least one episode of infection. Monocytes from trauma patients expressed higher levels of TLR2 and TLR4 than monocytes from control subjects at all time points. Expression of TLR2 and TLR4 in monocytes from those patients who developed any infection was significantly lower than in those patients without infection but still significantly higher than in control subjects. Cellular responses to TLR4 agonist were impaired. Monocytes from traumatic patients phagocytosized less efficiently than monocytes from control subjects. Conclusions: These results indicate that trauma patients present a dysregulation of the innate immune system that persists during the first 14 days after hospital admission. Copyright © 2010 by Lippincott Williams & Wilkins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Airway epithelial cells act as the first barrier against pathogens. These cells recognize conserved structural motifs expressed by microbial pathogens via Toll-like receptors (TLRs) expressed on the surface. In contrast to the level of expression in lymphoid cells, the level of expression of TLR2 and TLR4 in airway epithelial cells is low under physiological conditions. Here we explored whether Klebsiella pneumoniae upregulates the expression of TLRs in human airway epithelial cells. We found that the expression of TLR2 and TLR4 by A549 cells and human primary airway cells was upregulated upon infection with K. pneumoniae. The increased expression of TLRs resulted in enhancement of the cellular response upon stimulation with Pam3CSK4 and lipopolysaccharide, which are TLR2 and TLR4 agonists, respectively. Klebsiella-dependent upregulation of TLR expression occurred via a positive IkappaBalpha-dependent NF-kappaBeta pathway and via negative p38 and p44/42 mitogen-activated protein kinase-dependent pathways. We showed that Klebsiella-induced TLR2 and TLR4 upregulation was dependent on TLR activation. An isogenic capsule polysaccharide (CPS) mutant did not increase TLR2 and TLR4 expression. Purified CPS upregulated TLR2 and TLR4 expression, and polymyxin B did not abrogate CPS-induced TLR upregulation. Although no proteins were detected in the CPS preparation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and colloidal gold staining, we could not rule out the possibility that traces of protein in our CPS preparation could have been responsible, at least in part, for the TLR upregulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: In recent years, much progress has been made in the treatment of multiple myeloma. However, a major limitation of existing chemotherapeutic drugs is the eventual emergence of resistance; hence, the development of novel agents with new mechanisms of action is pertinent. Here, we describe the activity and mechanism of action of pyrrolo-1,5-benzoxazepine-15 (PBOX-15), a novel microtubule-targeting agent, in multiple myeloma cells.

Methods: The anti-myeloma activity of PBOX-15 was assessed using NCI-H929, KMS11, RPMI8226, and U266 cell lines, and primary myeloma cells. Cell cycle distribution, apoptosis, cytochrome c release, and mitochondrial inner membrane depolarisation were analysed by flow cytometry; gene expression analysis was carried out using TaqMan Low Density Arrays; and expression of caspase-8 and Bcl-2 family of proteins was assessed by western blot analysis.

Results: Pyrrolo-1,5-benzoxazepine-15 induced apoptosis in ex vivo myeloma cells and in myeloma cell lines. Death receptor genes were upregulated in both NCI-H929 and U266 cell lines, which displayed the highest and lowest apoptotic responses, respectively, following treatment with PBOX-15. The largest increase was detected for the death receptor 5 (DR5) gene, and cotreatment of both cell lines with tumour necrosis factor-related apoptosis-inducing ligand (TRAIL), the DR5 ligand, potentiated the apoptotic response. In NCI-H929 cells, PBOX-15-induced apoptosis was shown to be caspase-8 dependent, with independent activation of extrinsic and intrinsic apoptotic pathways. A caspase-8-dependent decrease in expression of Bim(EL) preceded downregulation of other Bcl-2 proteins (Bid, Bcl-2, Mcl-1) in PBOX-15-treated NCI-H929 cells.

Conclusion: PBOX-15 induces apoptosis and potentiates TRAIL-induced cell death in multiple myeloma cells. Thus, PBOX-15 represents a promising agent, with a distinct mechanism of action, for the treatment of this malignancy. British Journal of Cancer (2011) 104, 281-289. doi: 10.1038/sj.bjc.6606035 www.bjcancer.com Published online 21 December 2010 (C) 2011 Cancer Research UK

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The REsearch on a CRuiser Enabled Air Transport Environment (RECREATE) project is considers the introduction and airworthiness of cruiser-feeder operations for civil aircraft. Cruiser-feeder operations are investigated as a promising pioneering idea for the air transport of the future. The soundness of the concept of cruiser-feeder operations for civil aircraft can be understood, taking air-to-air refueling operations as an example. For this example, a comprehensive estimate of the benefits can be made, which shows a fuel burn reduction potential and a CO2 emission reduction of 31% for a typical 6000 nautical miles flight with a payload of 250 passengers. This reduction potential is known to be large by any standard. The top level objective of the RECREATE project is to demonstrate on a preliminary design level that cruiser-feeder operations (as a concept to reduce fuel burn and CO2 emission levels) can be shown to comply with the airworthiness requirements for civil aircraft. The underlying Scientific and Technological (S&T) objectives are to determine and study airworthy operational concepts for cruiser-feeder operations, and to derive and quantify benefits in terms of CO2 emission reduction but also other benefits.

Work Package (WP) 3 has the objective to substantiate the assumed benefits of the cruiser/feeder operations through refined analysis and simulation. In this report, initial benefits evaluation of the initial RECREATE cruiser/feeder concepts is presented. The benefits analysis is conducted in delta mode, i.e. comparison is made with a baseline system. Since comparing different aircraft and air transport systems is never a trivial task, appropriate measures and metrics are defined and selected first. Non-dimensional parameters are defined and values for the baseline system derived.

The impact of cruiser/feeder operations such as air-to-air refueling are studied with respect to fuel-burn (or carbon-dioxide), noise and congestion. For this purpose, traffic simulations have been conducted.
Cruiser/feeder operations will have an impact on dispatch reliability as well. An initial assessment of the effect on dispatch reliability has been made and is reported.

Finally, a considerable effort has been made to create the infrastructure for economic delta analysis of the cruiser/feeder concept of operation. First results of the cost analysis have been obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Natural Killer Cells (NK) play an important role in detection and elimination of virus-infected, damaged or cancer cells. NK cell function is guided by expression of Killer Immunoglobulin-like Receptors (KIRs) and contributed to by the cytokine milieu. KIR molecules are grouped on NK cells into stimulatory and inhibitory KIR haplotypes A and B, through which NKs sense and tolerate HLA self-antigens or up-regulate the NK-cytotoxic response to cells with altered HLA self-antigens, damaged by viruses or tumours. We have previously described increased numbers of NK and NK-related subsets in association with sIL-2R cytokine serum levels in BELFAST octo/nonagenarians. We hypothesised that changes in KIR A and B haplotype gene frequencies could explain the increased cytokine profiles and NK compartments previously described in Belfast Elderly Longitudinal Free-living Aging STudy (BELFAST) octo/nonagenarians, who show evidence of ageing well.

Results: In the BELFAST study, 24% of octo/nonagenarians carried the KIR A haplotype and 76% KIR B haplotype with no differences for KIR A haplogroup frequency between male or female subjects (23% v 24%; p=0.88) or for KIR B haplogroup (77% v 76%; p=0.99). Octo/nonagenarian KIR A haplotype carriers showed increased NK numbers and percentage compared to Group B KIR subjects (p=0.003; p=0.016 respectively). There were no KIR A/ B haplogroup-associated changes for related CD57+CD8 (high or low) subsets. Using logistic regression, KIR B carriers were predicted to have higher IL-12 cytokine levels compared to KIR A carriers by about 3% (OR 1.03, confidence limits CI 0.99–1.09; p=0.027) and 14% higher levels for TGF-ß (active), a cytokine with an anti-inflammatory role, (OR 1.14, confidence limits CI 0.99–1.09; p=0.002).

Conclusion: In this observational study, BELFAST octo/nonagenarians carrying KIR A haplotype showed higher NK cell numbers and percentage compared to KIR B carriers. Conversely, KIR B haplotype carriers, with genes encoding for activating KIRs, showed a tendency for higher serum pro-inflammatory cytokines compared to KIR A carriers. While the findings in this study should be considered exploratory they may serve to stimulate debate about the immune signatures of those who appear to age slowly and who represent a model for good quality survivor-hood.© 2013 Rea et al.; licensee BioMed Central Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The clonidine mydriasis model in rats has been widely applied in preclinical research to characterize a -adrenoceptor antagonistic properties of drugs. The present study was undertaken to pharmacologically determine if imidazoline I receptors are also involved in this model system. Sigmoid dose-response curves for pupillary dilation were produced in pentobarbital anesthetized rats by intravenous administration of increasing doses of agonists (guanabenz for a -adrenoceptors, clonidine for both a - adrenoceptors and imidazoline I receptors, and rilmenidine for imidazoline I receptors). Two antagonists (RS 79948 for a -adrenoceptors and efaroxan for imidazoline I receptors) were used to antagonize the mydriasis elicited by those three agonists, with antagonistic potencies calculated. In additional experiments, we examined the effect of the selective imidazoline I receptor antagonist, AGN 192403, on clonidine-induced mydriasis. The results showed that pupillary response curves elicited by guanabenz, clonidine and rilmenidine were competitively antagonized by both RS 79948 (0.03-1 mg/kg) and efaroxan (0.03-1 mg/kg) in a dose-related fashion. The potencies of either antagonist against the three agonists were not significantly different. AGN 192403 (5 mg/kg) did not significantly shift the clonidine mydriasis curve. These results suggest that imidazoline I receptors are not functionally involved in the rat clonidine mydriasis model and support this in vivo system as a useful model for studies of a -adrenoceptors. © 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to identify receptors that mediate reflex mydriasis in pentobarbital-anesthetized rabbits, in which the cervical sympathetic nerve was sectioned unilaterally. Voltage-response curves of pupillary dilation were generated bilaterally by stimulation of the sciatic nerve. Evoked mydriatic responses were mediated mainly by efferent parasympathetic innervation, and, to a lesser extent, by sympathetic innervation. The a-adrenergic antagonist, phenoxybenzamine (0.3 mg/kg, intravenously (i.v.)), antagonized mydriasis of the neurally intact eye, but not that on the sympathectomized side. The a- adrenergic antagonist, RS 79948 (0.3 mg/kg, i.v.), potentiated mydriasis of the normal eye, but was without either a potentiating or inhibitory effect on the mydriasis of the sympathectomized eye. In addition, the dopamine-receptor antagonist, haloperidol (1 mg/kg, i.v.), inhibited evoked mydriasis of the sympathectomized eye. These results suggest that, unlike some other species (cats and rats), a-adrenoceptors do not mediate reflex mydriasis elicited by sciatic-nerve stimulation in the rabbit, and support the previous finding in humans that dopamine receptors may mediate this response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the difficulties with using molecularly imprinted polymers (MIPs) and other electrically insulating materials as the recognition element in electrochemical sensors is the lack of a direct path for the conduction of electrons from the active sites to the electrode. We have sought to address this problem through the preparation and characterization of novel hybrid materials combining a catalytic MIP, capable of oxidizing the template, catechol, with an electrically conducting polymer. In this way a network of "molecular wires" assists in the conduction of electrons from the active sites within the MIP to the electrode surface. This was made possible by the design of a new monomer that combines orthogonal polymerizable functionality; comprising an aniline group and a methacrylamide. Conducting films were prepared on the surface of electrodes (Au on glass) by electropolymerization of the aniline moiety. A layer of MIP was photochemically grafted over the polyaniline, via N,N'-diethyldithiocarbamic acid benzyl ester (iniferter) activation of the methacrylamide groups. Detection of catechol by the hybrid-MIP sensor was found to be specific, and catechol oxidation was detected by cyclic voltammetry at the optimized operating conditions: potential range -0.6 V to +0.8 V (vs Ag/AgCl), scan rate 50 mV/s, PBS pH 7.4. The calibration curve for catechol was found to be linear to 144 µM, with a limit of detection of 228 nM. Catechol and dopamine were detected by the sensor, whereas analogues and potentially interfering compounds, including phenol, resorcinol, hydroquinone, serotonin, and ascorbic acid, had minimal effect (=3%) on the detection of either analyte. Nonimprinted hybrid electrodes and bare gold electrodes failed to give any response to catechol at concentrations below 0.5 mM. Finally, the catalytic properties of the sensor were characterized by chronoamperometry and were found to be consistent with Michaelis-Menten kinetics. © 2009 American Chemical Society.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of imprinted polymers targeting nucleoside metabolites, prepared using a template analogue approach, are presented. These were prepared following selection of the optimum functional monomer by solution association studies using 1H-NMR titrations whereby methacrylic acid was shown to be the strongest receptor with and affinity constant of 621 ± 51 L mol-1 vs. 110 ± 16 L mol-1 for acrylamide. The best performing polymers were prepared using methanol as porogenic co-solvent and although average binding site affinities were marginally reduced, 2.3×104 L mol-1 vs. 2.7×104 L mol-1 measured for a polymer prepared in acetonitrile, these polymers contained the highest number of binding sites, 5.27 μmol g-1¬¬ vs. 1.64 μmol g-1, while they also exhibited enhanced selectivity for methylated guanosine derivatives. When applied as sorbents in the extraction of nucleoside derivative cancer biomarkers from synthetic urine samples, significant sample clean-up and recoveries of up to 90% for 7-methylguanosine were achieved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel series of polymerisable squaramides has been synthesised in high yields using simple chemical reactions, and evaluated in the binding of anionic species. These vinyl monomers can be used as functional building blocks in co-polymerisations with a plethora of co-monomers or cross-linkers, grace to their compatibility with free-radical polymerisation reactions. Aromatic substituted squaramides were found to be the strongest receptors, while binding of certain anions was accompanied by a strong colour change, attributed to the de-protonation of the squaramide. The best performing squaramide monomers were incorporated in molecularly imprinted polymers (MIPs) targeting a model anion and their capacities and selectivity were evaluated by rebinding experiments. Polymers prepared using the new squaramide monomers were compared to urea based co-polymers, and were found to contain up to 80% of the theoretical maximum number of binding sites, an exceptionally high value compared to previous reports. Strong polymer colour changes were observed upon rebinding of certain anions, equivalent to those witnessed in solution, paving the way for application of such materials in anion sensing devices.



Graphical abstract: Polymerisable squaramide receptors for anion binding and sensing

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Signalling lymphocyte activation molecule (SLAM) has been identified as an immune cell receptor for the morbilliviruses, measles (MV), canine distemper (CDV), rinderpest and peste des petits ruminants (PPRV) viruses, while CD46 is a receptor for vaccine strains of MV. More recently poliovirus like receptor 4 (PVRL4), also known as nectin 4, has been identified as a receptor for MV, CDV and PPRV on the basolateral surface of polarised epithelial cells. PVRL4 is also up-regulated by MV in human brain endothelial cells. Utilisation of PVRL4 as a receptor by phocine distemper virus (PDV) remains to be demonstrated as well as confirmation of use of SLAM. We have observed that unlike wild type (wt) MV or wtCDV, wtPDV strains replicate in African green monkey kidney Vero cells without prior adaptation, suggesting the use of a further receptor. We therefore examined candidate molecules, glycosaminoglycans (GAG) and the tetraspan proteins, integrin β and the membrane bound form of heparin binding epithelial growth factor (proHB-EGF),for receptor usage by wtPDV in Vero cells. We show that wtPDV replicates in Chinese hamster ovary (CHO) cells expressing SLAM and PVRL4. Similar wtPDV titres are produced in Vero and VeroSLAM cells but more limited fusion occurs in the latter. Infection of Vero cells was not inhibited by anti-CD46 antibody. Removal/disruption of GAG decreased fusion but not the titre of virus. Treatment with anti-integrin β antibody increased rather than decreased infection of Vero cells by wtPDV. However, infection was inhibited by antibody to HB-EGF and the virus replicated in CHO-proHB-EGF cells, indicating use of this molecule as a receptor. Common use of SLAM and PVRL4 by morbilliviruses increases the possibility of cross-species infection. Lack of a requirement for wtPDV adaptation to Vero cells raises the possibility of usage of proHB-EGF as a receptor in vivo but requires further investigation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antimicrobial peptides (AMPs) are effectors of cutaneous innate immunity and protect primarily against microbial infections. An array of AMPs can be found in and on the skin. Those include peptides that were first discovered for their antimicrobial properties but also proteins with antimicrobial activity first characterized for their activity as chemokines, enzymes, enzyme inhibitors and neuropeptides. Cathelicidins were among the first families of AMPs discovered in skin. They are now known to exert a dual role in innate immune defense: they have direct antimicrobial activity and will also initiate a host cellular response resulting in cytokine release, inflammation and angiogenesis. Altered cathelicidin expression and function was observed in several common inflammatory skin diseases such as atopic dermatitis, rosacea and psoriasis. Until recently the molecular mechanisms underlying cathelicidin regulation were not known. Lately, vitamin D3 was identified as the major regulator of cathelicidin expression and entered the spotlight as an immune modulator with impact on both, innate and adaptive immunity. Therapies targeting vitamin D3 signalling may provide novel approaches for the treatment of infectious and inflammatory skin diseases by affecting both innate and adaptive immune functions through AMP regulation.