119 resultados para cytokines


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Proliferative Diabetic Retinopathy (PDR) and Eales' Disease (ED) have different aetiologies although they share certain common clinical symptoms including pre-retinal neovascularization. Since there is a need to understand if the shared end-stage angiogenic pathology of PDR and ED is driven by common stimulating factors, we have studied the cytokines contained in vitreous from both patient groups and analyzed the angiogenic potential of these samples in vitro.

Material and Methods

Vitreous samples from patients with PDR (n = 13) and ED (n = 5) were quantified for various cytokines using a cytokine biochip array and sandwich ELISA. An additional group of patients (n = 5) with macular hole (MH) was also studied for comparison. To determine the angiogenic potential of these vitreous samples, they were analyzed for their ability to induce tubulogenesis in human microvascular endothelial cells. Further, the effect of anti-VEGF (Ranibizumab) and anti-IL-6 antibodies were studied on vitreous-mediated vascular tube formation.

Results

Elevated levels of IL-6, IL-8, MCP-1 and VEGF were observed in vitreous of both PDR and ED when compared to MH. PDR and ED vitreous induced greater levels of endothelial cell tube formation compared to controls without vitreous (P<0.05). When VEGF in vitreous was neutralized by clinically-relevant concentrations of Ranibizumab, tube length was reduced significantly in 5 of 6 PDR and 3 of 5 ED samples. Moreover, when treated with IL-6 neutralizing antibody, apparent reduction (71.4%) was observed in PDR vitreous samples.

Conclusions

We have demonstrated that vitreous specimens from PDR and ED patients share common elevations of pro-inflammatory and pro-angiogenic cytokines. This suggests that common cytokine profiles link these two conditions.

Figures 12

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The small leucine-rich repeat proteoglycan (SLRPs) family of proteins currently consists of five classes, based on their structural composition and chromosomal location. As biologically active components of the extracellular matrix (ECM), SLRPs were known to bind to various collagens, having a role in regulating fibril assembly, organization and degradation. More recently, as a function of their diverse proteins cores and glycosaminoglycan side chains, SLRPs have been shown to be able to bind various cell surface receptors, growth factors, cytokines and other ECM components resulting in the ability to influence various cellular functions. Their involvement in several signaling pathways such as Wnt, transforming growth factor-β and epidermal growth factor receptor also highlights their role as matricellular proteins. SLRP family members are expressed during neural development and in adult neural tissues, including ocular tissues. This review focuses on describing SLRP family members involvement in neural development with a brief summary of their role in non-neural ocular tissues and in response to neural injury.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Crohn's disease is a chronic inflammatory bowel disease of unknown aetiology. Mucosal inflammatory dysregulation is likely important, with increased production of pro-inflammatory cytokines, including tumour necrosis factor alpha (TNFα). The chimeric monoclonal antibody, infliximab, inhibits TNFα and promotes intestinal mucosal healing. Despite this, many patients still require surgical intervention. Patients who have undergone colonic resection post-infliximab therapy, show markedly variable morphological response to treatment. FOXP3+ CD4+ regulatory T-cells have been shown to have a protective role in autoimmune/inflammatory diseases and their sequestration to the bowel is found in those treated with infliximab. We examined the immunohistochemical profile of lymphoid aggregates in tissue sections from post-infliximab Crohn's colitis resection specimens, classified as morphological responders or non-responders, defined in relation to the absence/presence of mucosal ulceration and active inflammation, and a control group. Results indicated no significant diffences in CD68-positive cell counts but increased FOXP3-positive (P = 0.02) and CD4-positive (P = 0.05) cell counts in responders versus non-responders. Untreated control scores were similar to non-responders. Although based on small study numbers, our results suggest an association between upregulation of FOXP3+/CD4+ regulatory T-cells and morphological response to infliximab therapy. This represents a possible quantitative methodology for monitoring therapeutic response to infliximab therapy, based on immunohistochemical evaluation of endoscopic biopsy specimens.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this study was to determine serum profiles of cytokines at a protein level and Creactive protein (CRP) during the development of postweaning multisystemic wasting syndrome (PMWS) in experimentally inoculated pigs. Levels of serum IFN-alpha, IL-6, IL-10, and CRP were examined for a 35-day period in 10 piglets experimentally infected with PCV2 at 3 weeks of age. Four of the infected piglets developed severe PMWS at 14 to 21 days post-infection (d.p.i.) and died prior to termination of the experiment. The remaining six PCV2-infected piglets experienced transient fever, but did not display overt clinical signs of PMWS and were considered as subclinically infected. A bioassay was used to detect IL-6 and ELISAs were used to detect IFN-alpha, IL-10, and CRP. There were no significant differences in cytokine or CRP expression from 0 to 7 d.p.i. between the PMWS-affected and the subclinically infected piglets. Levels of IL-10 and CRP were elevated from 10 and 14 d.p.i. respectively in the PMWS-affected piglets compared to the subclinically infected piglets. There were no significant differences in IFN-alpha and IL-6 expression between the PMWS-affected piglets and the subclinically infected piglets. The present study shows that elevated levels of serum CRP and IL-10 were associated with PCV2-infected piglets that subsequently developed severe PMWS. This may help to provide further insight into the immunoaetiogenesis of this syndrome.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An understanding of the mechanisms underlying the development of resistance to chemotherapy treatment is a gateway to the introduction of novel therapies and improved outcomes for women presenting with ovarian cancer (OC). The desired apoptotic death post-chemotherapy depends on an intact and fully functioning cell cycle machinery.

In this study we demonstrate that stable expression of miR-433 renders OC cells more resistant to paclitaxel treatment. Interestingly, only cells with the highest miR-433 survived paclitaxel suggesting the possible role of miR-433 in cancer recurrence. Importantly, for the first time we demonstrate that miR 433 induces cellular senescence, exemplified by a flattened morphology, the downregulation of phosphorylated Retinoblastoma (p Rb) and increased β galactosidase activity. Surprisingly, miR 433 induced senescence was independent of two well recognised senescent drivers: p21 and p16. Further in silico analysis followed by in vitro experiments identified CKD6 as a novel miR-433 target gene possibly explaining the observed p21 and p16-independent induction of cellular senescence. Another in silico identified miR-433 target gene was CDC27, a protein involved in the regulation of the cell cycle during mitosis. We demonstrate that the overexpression of pre-miR-433 leads to the downregulation of CDC27 in vitro revealing a novel interaction between miR-433 and CDC27, an integral cell cycle regulating protein.

Interestingly, miR-433 expressing cells also demonstrated an ability to impact their tumour microenvironment. We show that miR-433 is present in exosomes released from miR-433 overexpressing and high miR-433 naïve cells. Moreover, growth condition media (GCM) harvested from cells with high miR-433 have higher levels of IL-6 and IL-8, two key cytokines involved in the senescence associated secretory phenotype (SASP). Importantly, GCM from miR-433-enriched cells repressed the growth of co-cultured cells with initial studies showing a GCM-dependent induction of chemoresistance.

In conclusion, data in this study highlights how the aberrant expression miR-433 contributes to chemoresistance in OC cells. We postulate that standard chemotherapy, particularly paclitaxel, used to treat women with OC may have an attenuated ability to kill cells harbouring increased levels of miR-433, allowing for a subsequent chemoresistant phenotype post-therapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: The antitumor effects of FK506-binding protein like (FKBPL) and its extracellular role in angiogenesis are well characterized; however, its role in physiological/developmental angiogenesis and the effect of FKBPL ablation has not been evaluated. This is important as effects of some angiogenic proteins are dosage dependent. Here we evaluate the regulation of FKBPL secretion under angiogenic stimuli, as well as the effect of FKBPL ablation in angiogenesis using mouse and zebrafish models.

APPROACH AND RESULTS: FKBPL is secreted maximally by human microvascular endothelial cells and fibroblasts, and this was specifically downregulated by proangiogenic hypoxic signals, but not by the angiogenic cytokines, VEGF or IL8. FKBPL's critical role in angiogenesis was supported by our inability to generate an Fkbpl knockout mouse, with embryonic lethality occurring before E8.5. However, whilst Fkbpl heterozygotic embryos showed some vasculature irregularities, the mice developed normally. In murine angiogenesis models, including the ex vivo aortic ring assay, in vivo sponge assay, and tumor growth assay, Fkbpl(+/-) mice exhibited increased sprouting, enhanced vessel recruitment, and faster tumor growth, respectively, supporting the antiangiogenic function of FKBPL. In zebrafish, knockdown of zFkbpl using morpholinos disrupted the vasculature, and the phenotype was rescued with hFKBPL. Interestingly, this vessel disruption was ineffective when zcd44 was knocked-down, supporting the dependency of zFkbpl on zCd44 in zebrafish.

CONCLUSIONS: FKBPL is an important regulator of angiogenesis, having an essential role in murine and zebrafish blood vessel development. Mouse models of angiogenesis demonstrated a proangiogenic phenotype in Fkbpl heterozygotes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: Secretory leucocyte protease inhibitor and elafin are members of the whey acidic protein (WAP), or WAP four disulfide-core (WFDC), family of proteins and have multiple contributions to innate defence including inhibition of neutrophil serine proteases and inhibition of the inflammatory response to lipopolysaccharide (LPS). This study aimed to explore potential activities of WFDC12, a previously uncharacterised WFDC protein expressed in the lung. Methods: Recombinant expression and purification of WFDC12 were optimised in Escherichia coli. Antiprotease, antibacterial and immunomodulatory activities of recombinant WFDC12 were evaluated and levels of endogenous WFDC12 protein were characterised by immunostaining and ELISA. Results: Recombinant WFDC12 inhibited cathepsin G, but not elastase or proteinase-3 activity. Monocytic cells pretreated with recombinant WFDC12 before LPS stimulation produced significantly lower levels of the pro-inflammatory cytokines interleukin-8 and monocyte chemotactic protein-1 compared with cells stimulated with LPS alone. Recombinant WFDC12 became conjugated to fibronectin in a transglutaminase-mediated reaction and retained antiprotease activity. In vivo WFDC12 expression was confirmed by immunostaining of human lung tissue sections. WFDC12 levels in human bronchoalveolar lavage fluid from healthy and lung-injured patients were quantitatively compared, showing WFDC12 to be elevated in both patients with acute respiratory distress syndrome and healthy subjects treated with LPS, relative to healthy controls. Conclusions: Together, these results suggest a role for this lesser known WFDC protein in the regulation of lung inflammation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVES: We aimed to highlight the utility of novel dissolving microneedle (MN)-based delivery systems for enhanced transdermal protein delivery. Vaccination remains the most accepted and effective approach in offering protection from infectious diseases. In recent years, much interest has focused on the possibility of using minimally invasive MN technologies to replace conventional hypodermic vaccine injections.

METHODS: The focus of this study was exploitation of dissolving MN array devices fabricated from 20% w/w poly(methyl vinyl ether/maleic acid) using a micromoulding technique, for the facilitated delivery of a model antigen, ovalbumin (OVA).

KEY FINDINGS: A series of in-vitro and in-vivo experiments were designed to demonstrate that MN arrays loaded with OVA penetrated the stratum corneum and delivered their payload systemically. The latter was evidenced by the activation of both humoral and cellular inflammatory responses in mice, indicated by the production of immunoglobulins (IgG, IgG1, IgG2a) and inflammatory cytokines, specifically interferon-gamma and interleukin-4. Importantly, the structural integrity of the OVA following incorporation into the MN arrays was maintained.

CONCLUSION: While enhanced manufacturing strategies are required to improve delivery efficiency and reduce waste, dissolving MN are a promising candidate for 'reduced-risk' vaccination and protein delivery strategies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: The ovarian surface epithelium responds to cytokines and hormonal cues to initiate proliferation and migration following ovulation. Although insulin and IGF are potent proliferative factors for the ovarian surface epithelium and IGF is required for follicle development, increased insulin and IGF activity are correlated with at least two gynecologic conditions: polycystic ovary syndrome and epithelial ovarian cancer. Although insulin and IGF are often components of in vitro culture media, little is known about the effects that these growth factors may have on the ovarian surface epithelium morphology or how signaling in the ovarian surface may affect follicular health and development.

METHODS: Ovaries from CD1 mice were cultured in alginate hydrogels in the presence or absence of 5 μg/ml insulin or IGF-I, as well as small molecule inhibitors of IR/IGF1R, PI 3-kinase signaling, or MAPK signaling. Tissues were analyzed by immunohistochemistry for expression of cytokeratin 8 to mark the ovarian surface epithelium, Müllerian inhibiting substance to mark secondary follicles, and BrdU incorporation to assess proliferation. Changes in gene expression in the ovarian surface epithelium in response to insulin or IGF-I were analyzed by transcription array. Extracellular matrix organization was evaluated by expression and localization of collagen IV.

RESULTS: Culture of ovarian organoids with insulin or IGF-I resulted in formation of hyperplastic OSE approximately 4-6 cell layers thick with a high rate of proliferation, as well as decreased MIS expression in secondary follicles. Inhibition of the MAPK pathway restored MIS expression reduced by insulin but only partially restored normal OSE growth and morphology. Inhibition of the PI 3-kinase pathway restored MIS expression reduced by IGF-I and restored OSE growth to a single cell layer. Insulin and IGF-I altered organization of collagen IV, which was restored by inhibition of PI 3-kinase signaling.

CONCLUSIONS: While insulin and IGF are often required for propagation of primary cells, these cytokines may act as potent mitogens to disrupt cell growth, resulting in formation of hyperplastic OSE and decreased follicular integrity as measured by MIS expression and collagen deposition. This may be due partly to altered collagen IV deposition and organization in the ovary in response to insulin and IGF signaling mediated by PI 3-kinase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cystic fibrosis (CF) is a lifelong, inflammatory multi-organ disease and the most common lethal, genetic condition in Caucasian populations, with a median survival rate of 41.5 years. Pulmonary disease, characterized by infective exacerbations, bronchiectasis and increasing airway insufficiency is the most serious manifestation of this disease process, currently responsible for over 80% of CF deaths. Chronic dysregulation of the innate immune and host inflammatory response has been proposed as a mechanism central to this genetic condition, primarily driven by the nuclear factor κB (NF-κB) pathway. Chronic activation of this transcription factor complex leads to the production of pro-inflammatory cytokines and mediators such as IL-6, IL-8 and TNF-α. A20 has been described as a central and inducible negative regulator of NF-κB. This intracellular molecule negatively regulates NF-κB-driven pro-inflammatory signalling upon toll-like receptor activation at the level of TRAF6 activation. Silencing of A20 increases cellular levels of p65 and induces a pro-inflammatory state. We have previously shown that A20 expression positively correlates with lung function (FEV1%) in CF. Despite improvement in survival rates in recent years, advancements in available therapies have been incremental. We demonstrate that the experimental use of naturally occurring plant diterpenes such as gibberellin on lipopolysaccharide-stimulated cell lines reduces IL-8 release in an A20-dependent manner. We discuss how the use of a novel bio-informatics gene expression connectivity-mapping technique to identify small molecule compounds that similarly mimic the action of A20 may lead to the development of new therapeutic approaches capable of reducing chronic airway inflammation in CF. 

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Transforming Growth Factor-beta (TGFbeta) superfamily of cytokines is comprised of a number of structurally-related, secreted polypeptides that regulate a multitude of cellular processes including proliferation, differentiation and neoplastic transformation. These growth regulatory molecules induce ligand-mediated hetero-oligomerization of distinct type II and type I serine/threonine kinase receptors that transmit signals predominantly through receptor-activated Smad proteins but also induce Smad-independent pathways. Ligands, receptors and intracellular mediators of signaling initiated by members of the TGFbeta family are expressed in the mammary gland and disruption of these pathways may contribute to the development and progression of human breast cancer. Since many facets of TGFbeta and breast cancer have been recently reviewed in several articles, except for discussion of recent developments on some aspects of TGFbeta, the major focus of this review will be on the role of activins, inhibins, BMPs, nodal and MIS-signaling in breast cancer with emphasis on their utility as potential diagnostic, prognostic and therapeutic targets.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is widely accepted that silicon-substituted materials enhance bone formation, yet the mechanism by which this occurs is poorly understood. This work investigates the potential of using diatom frustules to answer on fundamental questions surrounding the role of silica in bone healing. Biosilica with frustules 20m were isolated from Cyclotella meneghiniana a unicellular microalgae that was sourced from the Mississippi River, USA. Silanisation chemistry was used to modify the surface of C. meneghiniana with amine (–NH2) and thiol (–SH) terminated silanes. Untreated frustules and both functionalised groups were soaked in culture medium for 24hrs. Following the culture period, frustules were separated from the conditioned medium by centrifugation and both were tested separately in vitro for cytotoxicity using murine-monocyte macrophage (J774) cell line. Cytotoxicity was measured using LDH release to measure damage to cell membrane, MTS to measure cell viability and live-dead staining. The expression and release of pro-inflammatory cytokines (IL-6 and TNF) were measured using ELISA. Our results found that diatom frustules and those functionalised with amino groups showed no cytotoxicity or elevated cytokine release. Diatom frustules functionalised with thiol groups showed higher levels of cytotoxicity. Diatom frustules and those functionalised with amino groups were taken forward to an in vivo mouse toxicity model, whereby the immunological response, organ toxicity and route of metabolism/excretion of silica were investigated. Histological results showed no organ toxicity in any of the groups relative to control. Analysis of blood Si levels suggests that modified frustules are metabolised quicker than functionalised frustules, suggesting that physiochemical attributes influence their biodistribution. Our results show that diatom frustules are non cytotoxic and are promising materials to better understand the role of silica in bone healing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diet-induced obesity can induce low-level inflammation and insulin resistance. Interleukin-1β (IL-1β) is one of the key proinflammatory cytokines that contributes to the generation of insulin resistance and diabetes, but the mechanisms that regulate obesity-driven inflammation are ill defined. Here we found reduced expression of the E3 ubiquitin ligase Pellino3 in human abdominal adipose tissue from obese subjects and in adipose tissue of mice fed a high-fat diet and showing signs of insulin resistance. Pellino3-deficient mice demonstrated exacerbated high-fat-diet-induced inflammation, IL-1β expression, and insulin resistance. Mechanistically, Pellino3 negatively regulated TNF receptor associated 6 (TRAF6)-mediated ubiquitination and stabilization of hypoxia-inducible factor 1α (HIF1α), resulting in reduced HIF1α-induced expression of IL-1β. Our studies identify a regulatory mechanism controlling diet-induced insulin resistance by highlighting a critical role for Pellino3 in regulating IL-1β expression with implications for diseases like type 2 diabetes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The precise regulatory mechanisms of amplification and downregulation of the pro- and anti-inflammatory cytokines in the inflammatory response have not been fully delineated. Although activated protein C (APC) and its precursor protein C (PC) have recently been reported to be promising therapeutic agents in the management of meningococcal sepsis, direct evidence for the anti-inflammatory effect remains scarce. We report that APC inhibits in vitro the release of tumor necrosis factor (TNF) and macrophage migration inhibitory factor (MIF), two known cytokine mediators of bacterial septic shock, from lipopolysaccharide (LPS)-stimulated human monocytes. The THP-1 monocytic cell line, when stimulated with LPS and concomitant APC, exhibited a marked reduction in the release of TNF and MIF protein in a concentration-dependent manner compared to cells stimulated with LPS alone. This effect was observed only when incubations were performed in serum-free media, but not in the presence of 1-10% serum. Serum-mediated inhibition could only be overcome by increasing APC concentrations to far beyond physiological levels, suggesting the presence of endogenous serum-derived APC inhibitors. Inhibition of MIF release by APC was found to be independent of TNF, as stimulation of MIF release by LPS was unaltered in the presence of anti-TNF antibodies. Our data confirm that the suggested anti-inflammatory properties of APC are due to direct inhibition of the release of the pro-inflammatory monokine TNF, and imply that the anti-inflammatory action of APC is also mediated via inhibition of MIF release.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Activated protein C (APC) protects against sepsis in animal models and inhibits the lipopolysacharide (LPS)-induced elaboration of proinflammatory cytokines from monocytes. The molecular mechanism responsible for this property is unknown. We assessed the effect of APC on LPS-induced tumour necrosis factor alpha (TNF-alpha) production and on the activation of the central proinflammatory transcription factor nuclear factor-kappaB (NF-kappaB) in a THP-1 cell line. Cells were preincubated with varying concentrations of APC (200 microg/ml, 100 microg/ml and 20 microg/ml) before addition of LPS (100 ng/ml and 10 microg/ml). APC inhibited LPS-induced production of TNF-alpha both in the presence and absence of fetal calf serum (FCS), although the effect was less marked with 10% FCS. APC also inhibited LPS-induced activation of NF-kappaB, with APC (200 microg/ml) abolishing the effect of LPS (100 ng/ml). The ability of APC to inhibit LPS-induced translocation of NF-kappaB is likely to be a significant event given the critical role of the latter in the host inflammatory response.