110 resultados para cryptographic pairing computation, elliptic curve cryptography
Resumo:
Molecular logic-based computation is a broad umbrella covering molecular sensors at its simplest level and logic gate arrays involving steadily increasing levels of parallel and serial integration. The fluorescent PET(photoinduced electron transfer) switching principle remains a loyal servant of this entire field. Applications arise from the convenient operation of molecular information processors in very small spaces.
Resumo:
PURPOSE: To evaluate the permanent prostate brachytherapy (PPB) learning curve using postimplant multisector dosimetric analysis and to assess the correlation between sector -specific dosimetry and patient-reported outcome measures (PROMs).
METHODS AND METHODS: First 200 patients treated with (125)I PPB monotherapy (145 Gy) at a single institution were assessed. Postimplant dosimetry (PID) using CT was evaluated for whole prostate (global) and 12 sectors, assessing minimum dose to 90% of prostate (D90) and dose to 0.1 cm(3) of rectum (D0.1cc). Global and sector PID results were evaluated to investigate changes in D90 with case number. Urinary and bowel PROMs were assessed using the International Prostate Symptom Score and the Expanded Prostate Cancer Index Composite questionnaire. The correlation between global and individual sector PID and urinary/bowel PROMs was also evaluated.
RESULTS: Linear regression confirmed a significant improvement in global D90 with case number (r(2) = 0.20; p = 0.001) at a rate of 0.11 Gy/case. Postimplant D90 of base sectors increased at a rate of 0.11-0.15 Gy/case (p = 0.0001) and matched global improvement. The regression lines of midgland and apex sectors were significantly different from global D90 (p = 0.01). Posterior midgland sectors showed a significant reduction in D90 with case number at a rate of 0.13-0.19 Gy/case (p = 0.01). Dose to posterior midgland sectors correlated with rectal D0.1cc dose but not bowel PROMs. Dose to posterior midgland sectors correlated with urinary International Prostate Symptom Score change, which was not apparent when global D90 alone was considered.
CONCLUSIONS: Sector analysis provided increased spatial information regarding the PPB learning curve. Furthermore, sector analysis correlated with urinary PROMs and rectal dose.
Resumo:
We present data for LSQ14bdq, a hydrogen-poor super-luminous supernova (SLSN) discovered by the La Silla QUEST survey and classified by the Public ESO Spectroscopic Survey of Transient Objects. The spectrum and light curve are very similar to slow-declining SLSNe such as PTF12dam. However, detections within ∼1 day after explosion show a bright and relatively fast initial peak, lasting for ∼15 days, prior to the usual slow rise to maximum light. The broader, main peak can be fit with either central engine or circumstellar interaction models. We discuss the implications of the precursor peak in the context of these models. It is too bright and narrow to be explained as a normal <sup>56</sup>Ni-powered SN, and we suggest that interaction models may struggle to fit the two peaks simultaneously. We propose that the initial peak may arise from the post-shock cooling of extended stellar material, and reheating by a central engine drives the second peak. In this picture, we show that an explosion energy of ∼2 × 10<sup>52</sup> erg and a progenitor radius of a few hundred solar radii would be required to power the early emission. The competing engine models involve rapidly spinning magnetars (neutron stars) or fallback onto a central black hole. The prompt energy required may favor the black hole scenario. The bright initial peak may be difficult to reconcile with a compact Wolf-Rayet star as a progenitor since the inferred energies and ejected masses become unphysical.
Resumo:
Molecular information gathering and processing – a young field of applied chemistry - is undergoing good growth. The progress is occurring both in terms of conceptual development and in terms of the strengthening of older concepts with new examples. This review critically surveys these two broad avenues. We consider some cases where molecules emulate one of the building blocks of electronic logic gates. We then examine molecular emulation of various Boolean logic gates carrying one, two or three inputs. Some single-input gates are popular information gathering devices. Special systems, such as ‘lab-on-a-molecule’ and molecular keypad locks, also receive attention. A situation deviating from the Boolean blueprint is also discussed. Some pointers are offered for maintaining the upward curve of the field.
Resumo:
It is an exciting era for molecular computation because molecular logic gates are being pushed in new directions. The use of sulfur rather than the commonplace nitrogen as the key receptor atom in metal ion sensors is one of these directions; plant cells coming within the jurisdiction of fluorescent molecular thermometers is another, combining photochromism with voltammetry for molecular electronics is yet another. Two-input logic gates benefit from old ideas such as rectifying bilayer electrodes, cyclodextrin-enhanced room-temperature phosphorescence, steric hindrance, the polymerase chain reaction, charge transfer absorption of donor–acceptor complexes and lectin–glycocluster interactions. Furthermore, the concept of photo-uncaging enables rational ways of concatenating logic gates. Computational concepts are also applied to potential cancer theranostics and to the selective monitoring of neurotransmitters in situ. Higher numbers of inputs are also accommodated with the concept of functional integration of gates, where complex input–output patterns are sought out and analysed. Molecular emulation of computational components such as demultiplexers and parity generators/checkers are achieved in related ways. Complexity of another order is tackled with molecular edge detection routines.
Resumo:
Purpose The aim of this study is to improve the drug release properties of antimicrobial agents from hydrophobic biomaterials using using an ion pairing strategy. In so doing antimicrobial agents may be eluted and maintained over a sufficient time period thereby preventing bacterial colonisation and subsequent biofilm formation on medical devices. Methods The model antimicrobial agent was chlorhexidine and the selected fatty acid counter ions were capric acid, myristic acid and stearic acid. The polymethyl methacrylate films were loaded with 2% of fatty acid:antimicrobial agent at the following molar ratios; 0.5:1M, 1:1M and 2:1M and thermally polymerized using azobisisobutyronitrile initiator. Drug release experiments were subsequently performed over a 3-month period and the mass of drug released under sink conditions (pH 7.0, 37oC) quantified using a validated HPLC-UV method. Results In all platforms, a burst of chlorhexidine release was observed over the initial 24-hour period. Similar release kinetics were observed between the formulations during the initial 28 days. However, as time progressed, the chlorhexidine baseline plateaued after 56 days whereas formulations containing the counterions appeared to continuously elute linearly with time. As can be observed in figure 1, the rank order of total chlorhexidine release in the presence of 0.5M fatty acid was myristic acid (40%) > capric acid (35%) > stearic acid (30%)> chlorhexidine baseline (15%). Conclusion The incorporation of fatty acids within the formulation significantly improved chlorhexidine solubility within both the monomer and the polymer and enhanced the drug release kinetics over the period of study. This is attributed to the greater diffusivity of chlorhexidine through PMMA in the presence of fatty acids. In th absence of fatty acids, chlorhexidine release was facilitated by dissolution of surface associated drug particles. This study has illustrated the ability of fatty acids to modulate chlorhexidine release from a model biomaterial through enhanced diffusivity. This strategy may prove advantageous for improved medical devices with enhanced resistance to infection.
Resumo:
The rotational state of asteroids is controlled by various physical mechanisms including collisions, internal damping and the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect. We have analysed the changes in magnitude between consecutive detections of ∼ 60,000 asteroids measured by the PanSTARRS 1 survey during its first 18 months of operations. We have attempted to explain the derived brightness changes physically and through the application of a simple model. We have found a tendency toward smaller magnitude variations with decreasing diameter for objects of 1 < D < 8 km. Assuming the shape distribution of objects in this size range to be independent of size and composition our model suggests a population with average axial ratios 1: 0.85 ± 0.13: 0.71 ± 0.13, with larger objects more likely to have spin axes perpendicular to the orbital plane.
Resumo:
Motivated by the need for designing efficient and robust fully-distributed computation in highly dynamic networks such as Peer-to-Peer (P2P) networks, we study distributed protocols for constructing and maintaining dynamic network topologies with good expansion properties. Our goal is to maintain a sparse (bounded degree) expander topology despite heavy {\em churn} (i.e., nodes joining and leaving the network continuously over time). We assume that the churn is controlled by an adversary that has complete knowledge and control of what nodes join and leave and at what time and has unlimited computational power, but is oblivious to the random choices made by the algorithm. Our main contribution is a randomized distributed protocol that guarantees with high probability the maintenance of a {\em constant} degree graph with {\em high expansion} even under {\em continuous high adversarial} churn. Our protocol can tolerate a churn rate of up to $O(n/\poly\log(n))$ per round (where $n$ is the stable network size). Our protocol is efficient, lightweight, and scalable, and it incurs only $O(\poly\log(n))$ overhead for topology maintenance: only polylogarithmic (in $n$) bits needs to be processed and sent by each node per round and any node's computation cost per round is also polylogarithmic. The given protocol is a fundamental ingredient that is needed for the design of efficient fully-distributed algorithms for solving fundamental distributed computing problems such as agreement, leader election, search, and storage in highly dynamic P2P networks and enables fast and scalable algorithms for these problems that can tolerate a large amount of churn.
Resumo:
Molecular logic-based computation continues to throw up new applications in sensing and switching, the newest of which is the edge detection of objects. The scope of this phenomenon is mapped out by the use of structure-activity relationships, where several structures of the molecules and of the objects are examined. The different angles and curvatures of the objects are followed with good-fidelity in the visualized edges, even when the objects are in reverse video.
Resumo:
This document describes the cryptographic hash function BLAKE2 and makes the algorithm specification and C source code conveniently available to the Internet community. BLAKE2 comes in two main flavors: BLAKE2b is optimized for 64-bit platforms and BLAKE2s for smaller architectures. BLAKE2 can be directly keyed, making it functionally equivalent to a Message Authentication Code (MAC).
Resumo:
We present optical and near-infrared observations of the type IIb supernova (SN) 2011fu from a few days to similar to 300 d after explosion. The SN presents a double-peaked light curve (LC) similar to that of SN 1993J, although more luminous and with a longer cooling phase after the primary peak. The spectral evolution is also similar to SN 1993J's, with hydrogen dominating the spectra to similar to 40 d, then helium gaining strength, and nebular emission lines appearing from similar to 60 d post-explosion. The velocities derived from the P-Cygni absorptions are overall similar to those of other type IIb SNe. We have found a strong similarity between the oxygen and magnesium line profiles at late times, which suggests that these lines are forming at the same location within the ejecta. The hydrodynamical modelling of the pseudo-bolometric LC and the observed photospheric velocities suggest that SN 2011fu was the explosion of an extended star (R similar to 450 R-circle dot), in which 1.3 x 10(51) erg of kinetic energy were released and 0.15 M-circle dot of Ni-56 were synthesized. In addition, a better reproduction of the observed early pseudo-bolometric LC is achieved if a more massive H-rich envelope than for other type IIb SNe is considered (0.3 M-circle dot). The hydrodynamical modelling of the LC and the comparison of our late-time spectra with nebular spectral models for type IIb SNe, point to a progenitor for SN 2011fu with a Zero Age Main Sequence (ZAMS) mass of 13-18 M-circle dot.
Resumo:
The current theory of catalyst activity in heterogeneous catalysis is mainly obtained from the study of catalysts with mono-phases, while most catalysts in real systems consist of multi-phases, the understanding of which is far short of chemists' expectation. Density functional theory (DFT) and micro-kinetics simulations are used to investigate the activities of six mono-phase and nine bi-phase catalysts, using CO hydrogenation that is arguably the most typical reaction in heterogeneous catalysis. Excellent activities that are beyond the activity peak of traditional mono-phase volcano curves are found on some bi-phase surfaces. By analyzing these results, a new framework to understand the unexpected activities of bi-phase surfaces is proposed. Based on the framework, several principles for the design of multi-phase catalysts are suggested. The theoretical framework extends the traditional catalysis theory to understand more complex systems.