92 resultados para contamination in soils
Resumo:
Single component geochemical maps are the most basic representation of spatial elemental distributions and commonly used in environmental and exploration geochemistry. However, the compositional nature of geochemical data imposes several limitations on how the data should be presented. The problems relate to the constant sum problem (closure), and the inherently multivariate relative information conveyed by compositional data. Well known is, for instance, the tendency of all heavy metals to show lower values in soils with significant contributions of diluting elements (e.g., the quartz dilution effect); or the contrary effect, apparent enrichment in many elements due to removal of potassium during weathering. The validity of classical single component maps is thus investigated, and reasonable alternatives that honour the compositional character of geochemical concentrations are presented. The first recommended such method relies on knowledge-driven log-ratios, chosen to highlight certain geochemical relations or to filter known artefacts (e.g. dilution with SiO2 or volatiles). This is similar to the classical normalisation approach to a single element. The second approach uses the (so called) log-contrasts, that employ suitable statistical methods (such as classification techniques, regression analysis, principal component analysis, clustering of variables, etc.) to extract potentially interesting geochemical summaries. The caution from this work is that if a compositional approach is not used, it becomes difficult to guarantee that any identified pattern, trend or anomaly is not an artefact of the constant sum constraint. In summary the authors recommend a chain of enquiry that involves searching for the appropriate statistical method that can answer the required geological or geochemical question whilst maintaining the integrity of the compositional nature of the data. The required log-ratio transformations should be applied followed by the chosen statistical method. Interpreting the results may require a closer working relationship between statisticians, data analysts and geochemists.
Resumo:
This review paper discusses the use of Tellus and Tellus Border soil and stream geochemistry data to investigate the relationship between medical data and naturally occurring background levels of potentially toxic elements (PTEs) such as heavy metals in soils and water. The research hypothesis is that long-term low level oral exposure of PTEs via soil and water may result in cumulative exposures that may act as risk factors for progressive diseases including cancer and chronic kidney disease. A number of public policy implications for regional human health risk assessments, public health policy and education are also explored alongside the argument for better integration of multiple data sets to enhance ongoing medical and social research. This work presents a partnership between the School of Geography, Archaeology and Palaeoecology, Northern Ireland Cancer Registry, Queen’s University Belfast, and the nephrology (kidney medicine) research group.