112 resultados para climate change
Resumo:
Variability in metabolic scaling in animals, the relationship between metabolic rate (R) and body mass (M), has been a source of debate and controversy for decades. R is proportional to M-b, the precise value of b much debated, but historically considered equal in all organisms. Recent metabolic theory, however, predicts b to vary among species with ecology and metabolic level, and may also vary within species under different abiotic conditions. Under climate change, most species will experience increased temperatures, and marine organisms will experience the additional stressor of decreased seawater pH ('ocean acidification'). Responses to these environmental changes are modulated by myriad species-specific factors. Body-size is a fundamental biological parameter, but its modulating role is relatively unexplored. Here, we show that changes to metabolic scaling reveal asymmetric responses to stressors across body-size ranges; b is systematically decreased under increasing temperature in three grazing molluscs, indicating smaller individuals were more responsive to warming. Larger individuals were, however, more responsive to reduced seawater pH in low temperatures. These alterations to the allometry of metabolism highlight abiotic control of metabolic scaling, and indicate that responses to climate warming and ocean acidification may be modulated by body-size.
Resumo:
The Agri-Food and aquaculture industries are vital to the economy of the island of Ireland with a gross annual output that is expected to double in the future. Identifying and understanding the potential influences of the anticipated climate variables on microorganisms that cause foodborne diseases, and their impact on these local industries, are essential. Investigating and monitoring foodborne pathogens and factors that influence their growth, transmission, pathogenesis and survival will facilitate assessment of the stability, security and vulnerability of the continuously evolving and increasing complex local food supply chain.
Resumo:
Climate change during the last deglaciation was strongly influenced by the „bipolar seesaw‟, producing antiphase climate responses between the North and South Atlantic. However, mounting evidence demands refinements of this model, with the occurrence of abrupt events in southern low to mid latitudes occurring in-phase with North Atlantic climate. Improved constraints on the north-south phasing and spatial extent of these events are therefore critical to
understanding the mechanisms that propagate abrupt events within the climate system. We present a 19,400 year multi-proxy record of climate change obtained from a rock hyrax midden in southernmost Africa. Arid anomalies in phase with the Younger Dryas and 8.2 ka events are apparent, indicating a clear shift in the influence of the bipolar seesaw, which diminished as the Earth warmed, and was succeeded after ~14.6 ka by the emergence of a dominant interhemispheric atmospheric teleconnection.
Resumo:
Risks are an essential feature of future climate change impacts. We explore whether knowledge that climate change might be the source of increasing pine beetle impacts on public or private forests affects stated risk estimates of damage, elicited using the exchangeability method. We find that across subjects the difference between public and private forest status does not influence stated risks, but the group told that global warming is the cause of pine beetle damage has significantly higher risk perceptions than the group not given this information.