220 resultados para cellular radio
Resumo:
The performance of three conventional enzyme and radioimmunoassays routinely used to detect residues of anabolic steroids in cattle sera were compared with dissociation enhanced lanthanide fluorescence immunoassay (DELFIA) kits designed for the hospital market. Slight modifications to the kit reagents were required for the analysis of bovine sera. Owing to the large sample volumes used in conventional assays, detection limits were generally better than those obtained with DELFIA kits, however, assay reproducibility was enhanced using the DELFIA technology. Comparison of sera obtained from cattle implanted with anabolic steroids revealed a good correlation between alternate methods (r(2) from 0.91 to 0.97). The DELFIA kits offer a faster method for measuring estradiol, progesterone and testosterone with adequate sensitivity and in a safer environment than that encountered using radioimmunoassays.
Resumo:
The localization and distribution of SALMFamide (S1)-like immunoreactivity (IR), was determined at both the cellular and subcellular level in the central nervous system (CNS) of the nematode roundworm Ascaris suum. The techniques of indirect immunofluorescence in conjunction with confocal scanning laser microscopy and post-embedding, IgG-conjugated colloidal gold immunostaining were used, respectively. Immunostaining was widespread in the CNS of adult A. suum, with immunoreactivity (IR) being localized in nerve cells and fibres in the ganglia associated with the anterior nerve ring and in the main nerve cords and their commissures. At the subcellular level, gold labeling of peptide was localized exclusively over dense-cored vesicles within nerve cell bodies, nerve axons and nerve terminals of the neuropile of the anterior nerve ring, main ganglia and nerve cords in the CNS. Double-labeling demonstrated an apparent co-localization of S1- and FMRFamide-IR-together IR-together with S1- and pancreatic polypeptide (PP)-IR in the same dense-cored vesicles. Antigen preabsorption experiments indicated little cross-reactivity, if any, between the three antisera; indeed, neither FMRFamide nor PP antigens abolished S1 immunostaining.
Resumo:
Purpose:
To develop a model to describe the response of cell populations to spatially modulated radiation exposures of relevance to advanced radiotherapies.
Materials and Methods:
A Monte Carlo model of cellular radiation response was developed. This model incorporated damage from both direct radiation and intercellular communication including bystander signaling. The predictions of this model were compared to previously measured survival curves for a normal human fibroblast line (AGO1522) and prostate tumor cells (DU145) exposed to spatially modulated fields.
Results:
The model was found to be able to accurately reproduce cell survival both in populations which were directly exposed to radiation and those which were outside the primary treatment field. The model predicts that the bystander effect makes a significant contribution to cell killing even in uniformly irradiated cells. The bystander effect contribution varies strongly with dose, falling from a high of 80% at low doses to 25% and 50% at 4 Gy for AGO1522 and DU145 cells, respectively. This was verified using the inducible nitric oxide synthase inhibitor aminoguanidine to inhibit the bystander effect in cells exposed to different doses, which showed significantly larger reductions in cell killing at lower doses.
Conclusions:
The model presented in this work accurately reproduces cell survival following modulated radiation exposures, both in and out of the primary treatment field, by incorporating a bystander component. In addition, the model suggests that the bystander effect is responsible for a significant portion of cell killing in uniformly irradiated cells, 50% and 70% at doses of 2 Gy in AGO1522 and DU145 cells, respectively. This description is a significant departure from accepted radiobiological models and may have a significant impact on optimization of treatment planning approaches if proven to be applicable in vivo.