124 resultados para beam-to column joints, fibrous reinforced concrete, load-deflection curves.
Resumo:
The nonlinear propagation of finite amplitude ion acoustic solitary waves in a plasma consisting of adiabatic warm ions, nonisothermal electrons, and a weakly relativistic electron beam is studied via a two-fluid model. A multiple scales technique is employed to investigate the nonlinear regime. The existence of the electron beam gives rise to four linear ion acoustic modes, which propagate at different phase speeds. The numerical analysis shows that the propagation speed of two of these modes may become complex-valued (i.e., waves cannot occur) under conditions which depend on values of the beam-to-background-electron density ratio , the ion-to-free-electron temperature ratio , and the electron beam velocity v0; the remaining two modes remain real in all cases. The basic set of fluid equations are reduced to a Schamel-type equation and a linear inhomogeneous equation for the first and second-order potential perturbations, respectively. Stationary solutions of the coupled equations are derived using a renormalization method. Higher-order nonlinearity is thus shown to modify the solitary wave amplitude and may also deform its shape, even possibly transforming a simple pulse into a W-type curve for one of the modes. The dependence of the excitation amplitude and of the higher-order nonlinearity potential correction on the parameters , , and v0 is numerically investigated.
Resumo:
Increased productivity and improved working environment have had high priority in the development of concrete construction over the last decade. Development of a material not needing vibration for compaction—i.e. selfcompacting concrete (SCC)—has successfully met the challenge and is now increasingly being used in routine practice. The key to the improvement of fresh concrete performance has been nanoscale tailoring of molecules for surface active admixtures, as well as improved understanding of particle packing and of the role of mineral surfaces in cementitious matrixes. Fundamental studies of rheological behaviour of cementitious particle suspensions were soon expanded to extensive innovation programmes incorporating applied research, site experiments, instrumented full scale applications supporting technology, standards and guides, information efforts as well as training programmes. The major impact of the introduction of SCC is connected to the production process. The choice and handling of constituents are modified as well as mix design, batching, mixing and transporting. The productivity is drastically improved through elimination of vibration compaction and process reorganisation. The working environment is significantly enhanced through avoidance of vibration induced damages, reduced noise and improved safety. Additionally, the technology is improving performance in terms of hardened material properties like surface quality, strength and durability.
Resumo:
Abstract This work addresses the problems of effective in situ measurement of the initiation or the rate of steel corrosion in reinforced concrete structures through the use of optical fiber sensor systems. By undertaking a series of tests over prolonged periods, coupled with acceleration of corrosion, the performance of fiber Bragg grating-based sensor systems attached to high-tensile steel reinforcement bars (ldquorebarsrdquo), and cast into concrete blocks was determined, and the results compared with those from conventional strain gauges where appropriate. The results show the benefits in the use of optical fiber networks under these circumstances and their ability to deliver data when conventional sensors failed.
Resumo:
The study of non-Maxwellian plasmas is crucial to the understanding of space and astrophysical plasma dynamics. In this paper, we investigate the existence of arbitrary amplitude ion-acoustic solitary waves in an unmagnetized plasma consisting of ions and excess superthermal electrons (modelled by a kappa-type distribution), which is penetrated by an electron beam. A kappa (kappa-) type distribution is assumed for the background electrons. A (Sagdeev-type) pseudopotential formalism is employed to derive an energy-balance like equation. The range of allowed values of the soliton speed (Mach number), wherein solitary waves may exist, is determined. The Mach number range (allowed soliton speed values) becomes narrower under the combined effect of the electron beam and of the superthermal electrons, and may even be reduced to nil (predicting no solitary wave existence) for high enough beam density and low enough kappa (significant superthermality). For fixed values of all other parameters (Mach number, electron beam-to-ion density ratio and electron beam velocity), both soliton amplitude and (electric potential perturbation) profile steepness increase as kappa decreases. The combined occurrence of small-amplitude negative potential structures and larger amplitude positive ones is pointed out, while the dependence of either type on the plasma parameters is investigated.
Resumo:
We have undertaken a 330-360 GHz molecular line survey of the halo gas surrounding the hot core associated with G34.26+0.15. In contrast to our molecular line survey of the hot core itself, where 338 lines from at least 38 species were detected, only 18 lines from 9 species were detected in the halo. The lines are mainly single transitions of simple di atomic and triatomic molecules. Lower limits to their column densities have been evaluated by an LTE method. In the case of methanol, where four transitions were detected, the rotation temperature and column density have been evaluated by the rotation diagram technique. We have modified the previous depth-dependent chemical model developed in Paper II to calculate the column densities observed along a general line of sight drawn through the model cloud. The model is also extended to produce beam-averaged column densities for better comparison with those observed. We compare the model column densities with those observed and make recommendations for future depth-dependent chemical modelling of hot cores.
Resumo:
Hot molecular cores in star-forming regions are known to have gas-phase chemical compositions determined by the evaporation of material from the icy mantles of interstellar grains, followed by subsequent reactions in the gas phase. Current models suggest that the evaporated material is rich in hydrogenated species, such as water, methane and methanol. In this paper, we report the detection of 14 rotational transitions of ethanol in the submillimetre spectrum of the molecular cloud associated with the ultra-compact H II region G34.3+0.15. We derive a rotation temperature of 125 K and a beam-averaged column density of 2.0x10(15) cm(-2), corresponding to a fractional abundance on the order of 4x10(-9). This large abundance, which is a lower limit due to the likelihood of beam dilution, cannot be made by purely gas-phase processes, and we conclude that the ethanol must be formed efficiently in the grain surface chemistry. Since it has been argued previously that methanol is formed via surface chemistry, it appears that alcohol formation may be a natural by-product of surface reactions.
Resumo:
The chemical and mechanical stability of slag activated with two different concentrations of sodium sulfate (Na2SO4) after exposure to elevated temperatures ranging from 200 to 800 °C with an increment of 200 °C has been examined. Compressive strengths and pH of the hardened pastes before and after the exposure were determined. The various decomposition phases formed were identified using X-ray diffraction, thermogravimetric analysis and scanning electron microscopy. The results indicated that Na2SO4 activated slag has a better resistance to the degradation caused by exposure to elevated temperature up to 600 °C than Portland cement system as its relative strengths are superior. The finer slag and higher Na2SO4 concentration gave better temperature resistance. Whilst the pH of the hardened pastes decreased with an increase in temperature, it still maintained a sufficiently high pH for the protection of reinforcing bar against corrosion.
Resumo:
Several products for surface treatment are available on the market to enhance durability characteristics of concrete. For each of these materials a certain level of protection is claimed. However, there is no commonly accepted procedure to assess the effectiveness of these treatments. The inherent generic properties may be of use to the manufacturers and those responsible for specifications, however, practising engineers are interested in knowing how they improve the performance of their structures. Thus in this review an attempt is made to assess the engineering aspects of the various surface treatments so that a procedure for their selection can be proposed. (C) 1997 Elsevier Science Lid.
Resumo:
Permeation characteristics and fracture strength are the fundamental properties of concrete that influence the initiation and extent of damage and can form the basis by which deterioration can be predicted. The relationship between these properties and deterioration mechanisms is discussed along with the different models representing their interaction with the environment. Mehta presented a holistic model of the deterioration of concrete based on the environmental action on the microstructure of concrete. Using a similar approach, a detailed investigation on the causes of concrete deterioration is used to develop a macro-model for each mechanism relating to the physical properties of concrete. A single interaction model is then presented for all types of deterioration, emphasizing the permeation properties of concrete. Data from an in situ investigation of concrete bridges in Northern Ireland is used to validate this model. This is followed by a micro-predictive model which includes an ionic transport sub-model, a deterioration sub-model and a structural sub-model and affords quantitative prediction of the deterioration of concrete structures. The quantitative predictive capabilities of the micro-model are demonstrated with the use of reported experimental data.
Resumo:
This paper investigates the influence of three fundamentally different durability enhancing products, viz. microsilica, controlled permeability formwork and silane, on some of the physical proper ties of near surface concrete. Microsilica (silica fume) is a pozzolan, controlled permeability formwork (CPF) is used to provide a free draining surface to a concrete form, while silane is a surface treatment applied to hardened concrete to reduce the ingress of water. Comparisons are made between the products when used individually and used in conjunction with each other, with a view to assessing whether the use of combinations of products may be desirable to improve the durability of concrete in certain circumstances. The effect of these materials on various durability parameters, such as freeze-thaw deterioration, carbonation resistance and chloride ingress, is considered in terms of their effect on permeation properties and surface strength. The results indicated that a combination of silane and CPF produces concrete with very low air permeability and sorptivity values. The influence of microsilica was more pronounced in increasing the surface strength of concrete.
Resumo:
This paper presents experimental tests carried out on steel fibre reinforced concrete samples, including mechanical tests as well as non-destructive technique (electrical resistivity) and non destructive technique on cores (X-ray). Electrical resistivity measurements are done as a blind test, to characterise the electrical anisotropy and deduce the distribution and the orientation of fibres. These results are compared to X-ray imaging to check the quality of the non destructive evaluation. Then, flexural and compressive strength are measured on specimens to assess the influence of fibre distribution on the concrete properties.
Resumo:
Sub-surface radar is becoming increasingly popular as an inspection method. Interpretation can be enhanced if uncertainties about the dielectric properties of the concretes under investigation are removed. The need for reliable data to identify possible variations of the dielectric properties of different concrete mixes and their condition on site has led to a systematic laboratory based experimental programme under the auspices of a major European Commission (Brite-Euram m Framework 4) funded project. Some key results from this recently completed work are presented in this paper with practical implications related to field surveys of structural concrete. (C) 2001 Elsevier Science Ltd. Ah rights reserved.
Resumo:
The effects of incorporating pulverized fuel ash (PFA) and ground granulated blastfurnace slag (ggbs) on the workability (slump), adiabatic temperature rise during hydration and long-term (up to 570 days) strength of high-strength concretes have been measured. Binary (PFA/ggbs and Portland cement) and ternary (PFA/ggbs plus microsilica and Portland cement) blends at water-binder ratios from 0.38 to 0.20 have been tested. The results show broadly similar effects to those in lower strength concrete, although of differing magnitude in some cases. Some potential advantages of ternary blends for optimization of properties have been demonstrated.
Resumo:
Concrete structures in marine environments are subjected to cyclic wetting and drying, corrosion of reinforcement due to chloride ingress and biological deterioration. In order to assess the quality of concrete and predict the corrosion activity of reinforcing steel in concrete in this environment, it is essential to monitor the concrete continuously right from the construction phase to the end of service life of the structure. In this paper a novel combination of sensor techniques which are integrated in a sensor probe is used to monitor the quality of cover concrete and corrosion of the reinforcement. The integrated sensor probe was embedded in different concrete samples exposed to an aggressive marine environment at the Hangzhou Bay Bridge in China. The sensor probes were connected to a monitoring station, which enabled the access and control of the data remotely from Belfast, UK. The initial data obtained from the monitoring station reflected the early age properties of the concretes and distinct variations in these properties were observed with different concrete types.