185 resultados para alkaline comet assay
Resumo:
Chloramphenicol is a broad-spectrum antibiotic shown to have specific activity against a wide variety of organisms that are causative agents of several disease conditions in domestic animals. Chloramphenicol has been banned for use in food-producing animals for its serious adverse toxic effects in humans. Due to the harmful effects of chloramphenicol residues livestock products should be free of any traces of these residues. Several analytical methods are available for chloramphenicol analysis but sensitive methods are required in order to ensure that no traces of chloramphenicol residues are present in edible animal products. In order to prevent the illegal use of chloramphenicol, regulatory control of its residues in food of animal origin is essential. A competitive enzyme-linked immunosorbent assay for chloramphenicol has been locally developed and optimized for the detection of chloramphenicol in sheep serum. In the assay, chloramphenicol in the test samples and that in chloramphenicol-horseradish peroxidase conjugate compete for antibodies raised against the drug in camels and immobilized on a microtitre plate. Tetramethylbenzidine-hydrogen peroxide (TMB/H2O2) is used as chromogen-substrate system. The assay has a detection limit of 0.1 ng/mL of serum with a high specificity for chloramphenicol. Cross-reactivity with florfenicol, thiamphenicol, penicillin, tetracyclines and sulfamethazine was not observed. The assay was able to detect chloramphenicol concentrations in normal sheep serum for at least 1 week after intramuscular injection with the drug at a dose of 25 mg/kg body weight (b.w.). The assay can be used as a screening tool for chloramphenicol use in animals.
Resumo:
A surface plasmon resonance biosensor method was developed to measure zilpaterol residues in sheep urine. A CM-5 sensor chip previously reacted with ethylenediamine to produce an aminoethyl group was coupled with 4-carboxybutyl zilpaterol activated using EDC/NHS. Five polyclonal and four monoclonal antibodies were screened for their suitability to detect low levels of zilpaterol using the biosensor technology. Total binding was greater for polyclonal than monoclonal antibodies, but a less diluted antibody solution was required for polyclonal antibodies. A fixed antibody concentration and various concentrations of zilpaterol were injected to obtain a standard curve for each antibody to allow for B-0 and IC50 determination. The stability of the assay was assessed by the consistency of B0 in repeated experiments extending at least six hours. A measure of non-specific binding allowed the assessment of the specificity of the antibody-immobilized ligand interaction. The effect of varying concentrations of urine on B-0 and IC50 was evaluated to assess the degree of
Resumo:
Objective To evaluate the feasibility of conducting a definitive study to assess the impact of introducing a rapid PCR-based test for candidemia on antifungal drug prescribing. Method Prospective, single centre, interrupted time series study consisting of three periods of six months' duration. The assay was available during the second period, during which the PCR assay was available for routine use by physicians Monday–Friday with guaranteed 24-h turnaround time. For each period total antifungal drug use, expressed as treatment-days, was recorded and an adjustment was made to exclude estimated use for proven candidemia. Also, during the intervention period, antifungal prescribing decisions for up to 72 h after each PCR result became available were recorded as either concordant or discordant with that result. Results While overall antifungal use remained relatively stable throughout, after adjustment for candidemia, there was a 38% reduction in use following introduction of the PCR test; however, this was nonsignificant at the 95% level. During the intervention period overall concordance between the PCR result and prescribing decisions was 84%. Conclusions The PCR assay for candidemia was requested, prescribing decisions were generally concordant with the results produced and there was an apparent decrease in antifungal prescription, although this was sustained even after withdrawal of the intervention; these findings should be more thoroughly evaluated in a larger trial.
Resumo:
The development of a quick PCR-based method to distinguish European cryptic Myotis spp., Myotis mystacinus, Myotis brandtii and Myotis alcathoe is described. Primers were designed around species-specific single nucleotide polymorphisms (SNP’s) in the ND1 mitochondrial gene, and a pair of control primers was designed in the 12S mitochondrial gene. A multiplex of seven primer combinations produces clear species-specific bands using gel electrophoresis. Robustness of the method was tested on 33 M. mystacinus, 16 M. brandtii and 15 M. alcathoe samples from across the European range of these species. The method worked well on faecal samples collected from maternity roosts of M. mystacinus. The test is intended to aid collection of data on these species through a rapid and easy identification method with the ability to use DNA obtained from a range of sources including faecal matter.
Resumo:
We present an updated cumulative size distribution (CSD) for Jupiter Family comet (JFC) nuclei, including a rigorous assessment of the uncertainty on the slope of the CSD. The CSD is expressed as a power law, N(>rN) ?r-qN, where rN is the radius of the nuclei and q is the slope. We include a large number of optical observations published by us and others since the comprehensive review in the Comets II book, and make use of an improved fitting method. We assess the uncertainty on the CSD due to all of the unknowns and uncertainties involved (photometric uncertainty, assumed phase function, albedo and shape of the nucleus) by means of Monte Carlo simulations. In order to do this we also briefly review the current measurements of these parameters for JFCs. Our final CSD has a slope q= 1.92 ± 0.20 for nuclei with radius rN= 1.25 km.
Resumo:
Malachite Green (MG), Crystal Violet (CV) and Brilliant Green (BC) are antibacterial, antifungal and antiparasitic agents that have been used for treatment and prevention of diseases in fish. These dyes are metabolized into reduced leuco forms (LMG, LCV, LBG) that can be present in fish muscles for a long period. Due to the carcinogenic properties they are banned for use in fish for human consumption in many countries including the European Union and the United States. HPLC and LC-MS techniques are generally used for the detection of these compounds and their metabolites in fish. This study presents the development of a fast enzyme-linked immunosorbent assay (ELISA) method as an alternative for screening purposes. A first monoclonal cell line producing antibodies to MG was generated using a hybridoma technique. The antibody had good cross-reactivates with related chromatic forms of triphenylmethane dyes such as CV, BC, Methyl Green, Methyl Violet and Victoria Blue R. The monoclonal antibody (mAb) was used to develop a fast (20 min) disequilibrium ELISA screening method for the detection of triphenylmethanes in fish. By introducing an oxidation step with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) during sample extraction the assay was also used to detect the presence of the reduced metabolites of triphenylmethanes. The detection capability of the assay was 1 ng g(-1) for MG, LMG, CV, LCV and BC which was below the minimum required performance limit (MRPL) for the detection method of total MG (sum of MG and LMG) set by the Commission Decision 2004/25/EC (2 ng g(-1)). The mean recoveries for fish samples spiked at 0.5 MRPL and MRPL levels with MG and LMG were between 74.9 and 117.0% and inter- and intra-assay coefficients of variation between 4.7 and 25.7%. The validated method allows the analysis of a batch of 20 samples in two to three hours. Additionally, this procedure is substantially faster than other ELISA methods developed for MG/LMG thus far. The stable and efficient monoclonal cell line obtained is an unlimited source of sensitive and specific antibody to MG and other triphenylmethanes. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Sudan dyes have been found to be added to chilli and chilli products for illegal colour enhancement purposes. Due to the possible carcinogenic effect, they are not authorized to be used in food in the European Union or the USA. However, over the last few years, many products imported from Asian and African countries have been reported via the Rapid Alert System for Food and Feed in the European Union to be contaminated with these dyes. In order to provide fast screening method for the detection of Sudan I (SI), which is the most widely abused member of Sudan dyes family, a unique (20 min without sample preparation) direct disequilibrium enzyme-linked immunosorbent assay (ELISA) was developed. The assay was based on polyclonal antibodies highly specific to SI. A novel, simple gel permeation chromatography clean-up method was developed to purify extracts from matrices containing high amounts of fat and natural pigments, without the need for a large dilution of the sample. The assay was validated according to the Commission Decision 2002/657/EC criteria. The detection capability was determined to be 15 ng g(-1) in sauces and 50 ng g(-1) in spices. The recoveries found ranged from 81% to 116% and inter- and intra-assay coefficients of variation from 6% to 20%. The assay was used to screen a range of products (85 samples) collected from different retail sources within and outside the European Union. Three samples were found to contain high amounts (1,649, 722 and 1,461 ng g(-1)) of SI by ELISA. These results were confirmed by liquid chromatography-tandem mass spectrometry method. The innovative procedure allows for the fast, sensitive and high throughput screening of different foodstuffs for the presence of the illegal colorant SI.
Resumo:
A novel approach has been developed to determine ranitidine in paediatric samples using dried blood spots (DBS) on Guthrie cards (Whatman 903). A selective and sensitive HPLC-MS/MS assay has been developed and validated using small volumes of blood (30µl). A 6mm disc was punched from each DBS and extracted with methanolic solution of the internal standard (IS) nizatidine. This was further subjected to solid phase extraction (SPE), followed by reversed phase HPLC separation, using a XBridge™ C18 column and mobile phase 10mM ammonium acetate/methanol (98:2 v/v) with a flow rate of 0.3mL/min. This was combined with multiple reaction monitoring (MRM) mass detection using electrospray ionisation (ESI). The calibration curve for ranitidine was found linear over the range 10-500ng/mL (r=0.996). The limit of quantification (LOQ) of the method was validated at 10ng/mL. Accuracy and precision values for within and between days were
Resumo:
The FRAP reagent contains 2,4,6-tris(2-pyridyl)-s-triazine, which forms a blue-violet complex ion in the presence of ferrous ions. Although the FRAP (ferric reducing/antioxidant power) assay is popular and has been in use for many years, the correct molar extinction coefficient of this complex ion under FRAP assay conditions has never been published, casting doubt on the validity of previous calibrations. A previously reported value of 19.800 is an underestimate. We determined that the molar extinction coefficient was 21,140. The value of the molar extinction coefficient was also shown to depend on the type of assay and was found to be 22,230 under iron assay conditions, in good agreement with published data. Redox titration indicated that the ferrous sulfate heptahydrate calibrator recommended by Benzie and Strain, the FRAP assay inventors, is prone to efflorescence and, therefore, is unreliable. Ferrous ammonium sulfate hexahydrate in dilute sulfuric acid was a more stable alternative. Few authors publish their calibration data, and this makes comparative analyses impossible. A critical examination of the limited number of examples of calibration data in the published literature reveals only that Benzie and Strain obtained a satisfactory calibration using their method. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Purpose: Current prognostic factors are poor at identifying patients at risk of disease recurrence after surgery for stage II colon cancer. Here we describe a DNA microarray-based prognostic assay using clinically relevant formalin-fixed paraffin-embedded (FFPE) samples. Patients and Methods: A gene signature was developed from a balanced set of 73 patients with recurrent disease (high risk) and 142 patients with no recurrence (low risk) within 5 years of surgery. Results: The 634-probe set signature identified high-risk patients with a hazard ratio (HR) of 2.62 (P <.001) during cross validation of the training set. In an independent validation set of 144 samples, the signature identified high-risk patients with an HR of 2.53 (P <.001) for recurrence and an HR of 2.21 (P = .0084) for cancer-related death. Additionally, the signature was shown to perform independently from known prognostic factors (P <.001). Conclusion: This gene signature represents a novel prognostic biomarker for patients with stage II colon cancer that can be applied to FFPE tumor samples. © 2011 by American Society of Clinical Oncology.