112 resultados para acidulated phosphate fluoride
Resumo:
Aim. To investigate (a) variability in powder/liquid proportioning and (b) effect of variability on diametral tensile strength (DTS), in a zinc phosphate cement. Statistical analyses (α = 0.05) were by Student's t-test in the case of powder/liquid ratio and one-way ANOVA and Tukey HSD for pair-wise comparisons of mean DTS. The Null hypotheses were that (a) the powder-liquid mixing ratios would not differ from the manufacturer's recommended ratio (b) DTS of the set cement samples using the extreme powder/liquid ratios would not differ from those made using the recommended ratio.
Methodology. 34 dental students dispensed the components according to the manufacturer's instructions. The maximum and minimum powder/liquid ratios, together with the manufacturer's recommended ratio, were used to prepare samples for DTS testing.
Results. Powder/liquid ratios ranged from 2.386 to 1.018. The mean ratio (1.644) was not significantly different from the recommended value of 1.718 (P = 0.189). DTS values for the maximum and minimum ratios were both significantly different from each other (P < 0.001) and from the mean value obtained from the recommended ratio (P < 0.001).
Conclusions. Variability exists in powder/liquid ratio for hand dispensed zinc phosphate cement. This variability can affect the DTS of the set material.
Resumo:
Arsenate and arsenite sensitivity and arsenate influx tests were conducted for two rice cultivars of different arsenic sensitivity. Azucena and Bala. These were to establish if the mechanism of reduced arsenic sensitivity is achieved through an altered phosphate uptake system, as shown for Holcus lanatus. High phosphate treatments (>= 50 mu M) provided protection against both arsenate and arsenite. Unlike the H. lanatus tolerance mechanism, in the less sensitive cultivar Bala, arsenate influx did not decrease with phosphate treatment and phosphate transporters appeared to be constitutively upregulated; V(max) for arsenate influx remain similar when Bala was grown in the presence or absence of phosphate (V(max) - 0.90 and 0.63 nmol g(-1) f.wt min(-1) respectively). Although mean K(m) appear different, Bala did not show lower affinity to arsenate than Azucena in the absence of phosphate (K(m) - Azucena, 0.30 mM and Bala, 0.18), while in phosphate treatment, Bala arsenate affinity was half that observed for Azucena (K(m) - Azucena, 0.14 and Bala, 0.36 mM). These were low compared to a 4 and 6 fold decrease seen for similar studies on H. lanatus in the absence and presence of phosphate. Phosphate-induced arsenic protection was observed but the mechanism does not resemble that of H. lanatus. Alternative mechanisms were discussed. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
WcaJ is an Escherichia coli membrane enzyme catalysing the biosynthesis of undecaprenyl-diphosphate-glucose, the first step in the assembly of colanic acid exopolysaccharide. WcaJ belongs to a large family of polyisoprenyl-phosphate hexose-1-phosphate transferases (PHPTs) sharing a similar predicted topology consisting of an N-terminal domain containing four transmembrane helices (TMHs), a large central periplasmic loop, and a C-terminal domain containing the fifth TMH (TMH-V) and a cytosolic tail. However, the topology of PHPTs has not been experimentally validated. Here, we investigated the topology of WcaJ using a combination of LacZ/PhoA reporter fusions and sulfhydryl
labelling by PEGylation of novel cysteine residues introduced into a cysteine-less WcaJ. The results showed that the large central loop and the C-terminal tail both reside in the cytoplasm and are separated by TMH-V, which does not fully span the membrane, likely forming a "hairpin" structure. Modelling of TMH-V revealed that a highly conserved proline might contribute to a helix-break-helix structure in all PHPT members. Bioinformatic analyses show that all of these features are conserved in PHPT homologues from
Gram-negative and Gram-positive bacteria. Our data demonstrate a novel topological configuration for PHPTs, which is proposed as a signature for all members of this enzyme family
Resumo:
In this study, calcium phosphate (CaP) powders were blended with a three-dimensional printing (3DP) calcium sulfate (CaSO4)-based powder and the resulting composite powders were printed with a water-based binder using the 3DP technology. Application of a water-based binder ensured the manufacture of CaP:CaSO4 constructs on a reliable and repeatable basis, without long term damage of the printhead. Printability of CaP:CaSO4 powders was quantitatively assessed by investigating the key 3DP process parameters, i.e. in-process powder bed packing, drop penetration behavior and the quality of printed solid constructs. Effects of particle size, CaP:CaSO4 ratio and CaP powder type on the 3DP process were considered. The drop penetration technique was used to reliably identify powder formulations that could be potentially used for the application of tissue engineered bone scaffolds using the 3DP technique. Significant improvements (p < 0.05) in the 3DP process parameters were found for CaP (30-110 μm):CaSO4 powders compared to CaP (< 20 μm):CaSO4 powders. Higher compressive strength was obtained for the powders with the higher CaP:CaSO4 ratio. Hydroxyapatite (HA):CaSO4 powders showed better results than beta-tricalcium phosphate (β-TCP):CaSO4 powders. Solid and porous constructs were manufactured using the 3DP technique from the optimized CaP:CaSO4 powder formulations. High-quality printed constructs were manufactured, which exhibited appropriate green compressive strength and a high level of printing accuracy.
Resumo:
The chemical compositions of calcium phosphate materials are similar to that of bone making them very attractive for use in the repair of critical size bone defects. The bioresorption of calcium phosphate occurs principally by dissolution. To determine the impact of composition and flow conditions on dissolution rates, calcium phosphate tablets were prepared by slip casting of ceramic slips with different ratios of hydroxyapatite (HA) and ß-tricalcium phosphate (ß-TCP). Dissolution was evaluated at pH4 using both a static and dynamic flow regime. Both the composition of the HA:ß-TCP tablet and flow regime noticeably influenced the rate of dissolution; the 50:50 HA:ß-TCP composition demonstrating the greatest level of dissolution, and, exposure of the ceramic specimens to dynamic conditions producing the highest rate of dissolution. Understanding the impact of phase composition and flow condition with respect to the dissolution of calcium phosphate will aid in the development and improvement of materials for bone substitution.
Resumo:
Objectives: To quantify variability in hand proportioning of zinc phosphate cement among a cohort of dental undergraduates and to determine the effect of any such variability on the diametral tensile strength (DTS) of the set cement. The null hypothesis was that such variability has no effect on DTS.
Methods: Thirty-four operators dispensed a zinc phosphate cement [Fleck's® Cement] according to the manufacturers' instructions. The mass of powder and liquid dispensed was recorded. Cylindrical specimens (n = 2 x 34) of dimensions 6mm x 3mm were prepared using a stainless steel split mould. The maximum mass of powder and the minimum volume of liquid were used as one extreme ratio and the minimum mass of powder and the maximum volume of liquid used on the other extreme. The manufacturers' recommended ratio was also tested (n=34).The samples were left to set for one hour before being transferred into distilled water for 48 hours. Compression across a diameter was carried out using a universal testing machine, H10KS [Tinius Olsen], at a constant crosshead speed of 0.75 ±0.25 mm/min. Statistical analyses (α = 0.05) were by Student's t-test for the powder/liquid ratio and one-way ANOVA and Tukey HSD for for pair-wise comparisons of mean DTS. Tests were carried out for normality and constant variability.
Results: The mean (range) amount of powder dispensed was 0.863g (0.531-1.216)g. The mean (range) amount of liquid dispensed was 0.341ml (0.265-0.394)ml. The manufacturer's recommended amounts were 0.8g of powder and 0.3ml of liquid. The mean powder/liquid ratio was not significantly different from the manufacturer's recommended value (p=0.64). Mean (SD) DTS were (MPa) max: 7.19(1.50), min: 2.65(1.01), manufacturer: 6.01(1.30). All pair-wise comparisons were significantly different (p<0.001).
Conclusions: Variability exists in the hand proportioning powder and liquid components of zinc phosphate cement. This variability can affect the DTS of zinc phosphate cement.
Resumo:
A potential standard method for measuring the relative dissolution rate to estimate the resorbability of calcium-phosphate-based ceramics is proposed. Tricalcium phosphate (TCP), magnesium-substituted TCP (MgTCP) and zinc-substituted TCP (ZnTCP) were dissolved in a buffer solution free of calcium and phosphate ions at pH 4.0, 5.5 or 7.3 at nine research centers. Relative values of the initial dissolution rate (relative dissolution rates) were in good agreement among the centers. The relative dissolution rate coincided with the relative volume of resorption pits of ZnTCP in vitro. The relative dissolution rate coincided with the relative resorbed volume in vivo in the case of comparison between microporous MgTCPs with different Mg contents and similar porosity. However, the relative dissolution rate was in poor agreement with the relative resorbed volume in vivo in the case of comparison between microporous TCP and MgTCP due to the superimposition of the Mg-mediated decrease in TCP solubility on the Mg-mediated increase in the amount of resorption. An unambiguous conclusion could not be made as to whether the relative dissolution rate is predictive of the relative resorbed volume in vivo in the case of comparison between TCPs with different porosity. The relative dissolution rate may be useful for predicting the relative amount of resorption for calcium-phosphate-based ceramics having different solubility under the condition that the differences in the materials compared have little impact on the resorption process such as the number and activity of resorbing cells.
Resumo:
A tactful ionic-liquid (IL)-assisted approach to in situ synthesis of iron fluoride/graphene nanosheet (GNS) hybrid nanostructures is developed. To ensure uniform dispersion and tight anchoring of the iron fluoride on graphene, we employ an IL which serves not only as a green fluoride source for the crystallization of iron fluoride nanoparticles but also as a dispersant of GNSs. Owing to the electron transfer highways created between the nanoparticles and the GNSs, the iron fluoride/GNS hybrid cathodes exhibit a remarkable improvement in both capacity and rate performance (230 mAh g-1 at 0.1 C and 74 mAh g-1 at 40 C). The stable adhesion of iron fluoride nanoparticles on GNSs also introduces a significant improvement in long-term cyclic performance (115 mAh g-1 after 250 cycles even at 10 C). The superior electrochemical performance of these iron fluoride/GNS hybrids as lithium ion battery cathodes is ascribed to the robust structure of the hybrid and the synergies between iron fluoride nanoparticles and graphene. © 2013 American Chemical Society.
Resumo:
Arsenic (As) uptake and distribution in the roots, shoots, and grain of wheat (Triticum durum) grown in 2 As polluted soils (192 and 304 mg kg -1 respectively), and an uncontaminated soil (14 mg kg-1 ), collected from Scarlino plain (Tuscany, Italy), was investigated with respect with phosphorus fertilization. Three different level of phosphorus (P) fertilization: PO [0 kg ha-1], Pl [75 kg ha-1], and P2 [150 kg ha-1], as KH2PO4 of P, were applied. The presence of high concentrations of As in soils reduced plants growth, decreased grain yield and increased root, shoot and grain As concentrations, especially in the absence of P fertilization. The P fertilization decreased the As concentration in all the tissues as well as the translocation of As to the shoot and grain. This observation may be useful in certain areas of the world with high levels of As in soils, to reduce the potential risk posed to human health by As entering the food-chain. © by PSP.
Resumo:
In this study we have investigated the uptake and distribution of arsenic (As) and phosphate (Pi) in roots, shoots, and grain of wheat grown in an uncontaminated soil irrigated with solutions containing As at three different concentrations (0.5, 1 and 2 mg l-1) and in the presence or in the absence of P fertilization. Arsenic in irrigation water reduced plants growth and decreased grain yield. When Pi was not added (P-), plants were more greatly impacted compared to the plus Pi (P+) treatments. The differences in mean biomass between P- and P+ treatments at the higher As concentrations demonstrated the role of Pi in preventing As toxicity and growth inhibition. Arsenic concentrations in root, shoot and grain increased with increasing As concentration in irrigation water. It appears that P fertilization minimizes the translocation of As to the shoots and grain whilst enhancing P status of plant. The observation that P fertilization minimises the translocation of arsenic to the shoots and grain is interesting and may be useful for certain regions of the world that has high levels of As in groundwater or soils. © 2008 Springer Science+Business Media B.V.