112 resultados para X-rays: general


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Gold nanoparticle radiosensitization represents a novel technique in enhancement of ionising radiation dose and its effect on biological systems. Variation between theoretical predictions and experimental measurement is significant enough that the mechanism leading to an increase in cell killing and DNA damage is still not clear. We present the first experimental results that take into account both the measured biodistribution of gold nanoparticles at the cellular level and the range of the product electrons responsible for energy deposition. Combining synchrotron-generated monoenergetic X-rays, intracellular gold particle imaging and DNA damage assays, has enabled a DNA damage model to be generated that includes the production of intermediate electrons. We can therefore show for the first time good agreement between the prediction of biological outcomes from both the Local Effect Model and a DNA damage model with experimentally observed cell killing and DNA damage induction via the combination of X-rays and GNPs. However, the requirement of two distinct models as indicated by this mechanistic study, one for short-term DNA damage and another for cell survival, indicates that, at least for nanoparticle enhancement, it is not safe to equate the lethal lesions invoked in the local effect model with DNA damage events.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Trends and focii of interest in atomic modelling and data are identified in connection with recent observations and experiments in fusion and astrophysics. In the fusion domain, spectral observations are included of core, beam penetrated and divertor plasma. The helium beam experiments at JET and the studies with very heavy species at ASDEX and JET are noted. In the astrophysics domain, illustrations are given from the SOHO and CHANDRA spacecraft which span from the solar upper atmosphere, through soft x-rays from comets to supernovae remnants. It is shown that non-Maxwellian, dynamic and possibly optically thick regimes must be considered. The generalized collisional-radiative model properly describes the collisional regime of most astrophysical and laboratory fusion plasmas and yields self-consistent derived data for spectral emission, power balance and ionization state studies. The tuning of this method to routine analysis of the spectral observations is described. A forward look is taken as to how such atomic modelling, and the atomic data which underpin it, ought to evolve to deal with the extended conditions and novel environments of the illustrations. It is noted that atomic physics influences most aspects of fusion and astrophysical plasma behaviour but the effectiveness of analysis depends on the quality of the bi-directional pathway from fundamental data production through atomic/plasma model development to the confrontation with experiment. The principal atomic data capability at JET, and other fusion and astrophysical laboratories, is supplied via the Atomic Data and Analysis Structure (ADAS) Project. The close ties between the various experiments and ADAS have helped in this path of communication.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The past decade has seen a dramatic increase in interest in the use of gold nanoparticles (GNPs) as radiation sensitizers for radiation therapy. This interest was initially driven by their strong absorption of ionizing radiation and the resulting ability to increase dose deposited within target volumes even at relatively low concentrations. These early observations are supported by extensive experimental validation, showing GNPs' efficacy at sensitizing tumors in both in vitro and in vivo systems to a range of types of ionizing radiation, including kilovoltage and megavoltage X rays as well as charged particles. Despite this experimental validation, there has been limited translation of GNP-mediated radiation sensitization to a clinical setting. One of the key challenges in this area is the wide range of experimental systems that have been investigated, spanning a range of particle sizes, shapes, and preparations. As a result, mechanisms of uptake and radiation sensitization have remained difficult to clearly identify. This has proven a significant impediment to the identification of optimal GNP formulations which strike a balance among their radiation sensitizing properties, their specificity to the tumors, their biocompatibility, and their imageability in vivo. This white paper reviews the current state of knowledge in each of the areas concerning the use of GNPs as radiosensitizers, and outlines the steps which will be required to advance GNP-enhanced radiation therapy from their current pre-clinical setting to clinical trials and eventual routine usage.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A small scale sample nuclear waste package, consisting of a 28 mm diameter uranium penny encased in grout, was imaged by absorption contrast radiography using a single pulse exposure from an X-ray source driven by a high-power laser. The Vulcan laser was used to deliver a focused pulse of photons to a tantalum foil, in order to generate a bright burst of highly penetrating X-rays (with energy >500 keV), with a source size of <0.5 mm. BAS-TR and BAS-SR image plates were used for image capture, alongside a newly developed Thalium doped Caesium Iodide scintillator-based detector coupled to CCD chips. The uranium penny was clearly resolved to sub-mm accuracy over a 30 cm2 scan area from a single shot acquisition. In addition, neutron generation was demonstrated in situ with the X-ray beam, with a single shot, thus demonstrating the potential for multi-modal criticality testing of waste materials. This feasibility study successfully demonstrated non-destructive radiography of encapsulated, high density, nuclear material. With recent developments of high-power laser systems, to 10 Hz operation, a laser-driven multi-modal beamline for waste monitoring applications is envisioned.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The collisional (or free-free) absorption of soft x rays in warm dense aluminium remains an unsolved problem. Competing descriptions of the process exist, two of which we compare to our experimental data here. One of these is based on a weak scattering model, another uses a corrected classical approach. These two models show distinctly different behaviors with temperature. Here we describe experimental evidence for the absorption of 26-eV photons in solid density warm aluminium (Te≈1 eV). Radiative x-ray heating from palladium-coated CH foils was used to create the warm dense aluminium samples and a laser-driven high-harmonic beam from an argon gas jet provided the probe. The results indicate little or no change in absorption upon heating. This behavior is in agreement with the prediction of the corrected classical approach, although there is not agreement in absolute absorption value. Verifying the correct absorption mechanism is decisive in providing a better understanding of the complex behavior of the warm dense state.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Introduction: Foundation doctors are expected to assess and interpret plain x-ray studies of the chest/abdomen before a definitive report is issued by senior staff. The Royal College of Radiologists have published guidelines (RCR curriculum) on the scope of plain film findings medical students should be familiar with.1 Studies have shown that the x-ray interpretation without feedback does not significantly improve diagnostic ability. 2 Queen’s University, Belfast Trust Radiology and Experior Medical developed an online system to assess individual student ability to interpret X-ray findings. Over a series of assessments each student’s profile is built up, identifying strengths and weakness. The system can then create bespoke individual assessments re-evaluating previously identified weak areas and quantifying interpretative skill improvement. Aim: To determine how readily an online system is adopted by senior medical students, investigating if increasing exposure to x-ray interpretation combined with cyclical formative feedback enhances performance. Methods: The system was offered to all 270 final year medical students as an online resource. The system comprised a series of 20 weekly 30 minute assessments, containing normal and abnormal x-rays within the RCR curriculum. After each assessment students were given formative feedback, including their own result, annotated answers, peer group comparison and a breakdown of areas of strength and weakness. Focus groups of 4-5 students addressed student perspectives of the system, including ease of use, image resolution, system performance across different operating platforms, perceived value of formative feedback loops, breakdown of performance and the value of bespoke personalised assessments. Research Ethics Approval was granted for the study. Data analysis was via two-sided one-sample t-test; initial minimal recruitment was estimated as 60 students, to detect a mean 10% change in performance, with a standard deviation of 20%. Results and Discussion: Over 80% (n = XXX/270) of the student cohort engaged with the study. Student baseline average was 39%, increasing to 62% by the exit test. The steadily sustained improvement (57% relative performance in interpretative diagnostic accuracy) was despite increasing test difficulty. Student feedback via focus groups was universally positive throughout the examined domains. Conclusion: The online resource proved to be valuable, with high levels of student engagement, improving performance despite increasingly difficulty testing and positive learner experience with the system. References: 1. Undergraduate Radiology Curriculum, The Royal College of Ra, April 2012. Ref No. BFCR(12)4 The Royal College of Radiologists, April 2012 2. I Satia, S Bashagha, A Bibi, R Ahmed, S Mellor, F Zaman. Assessing the accuracy and certainty in interpretating chest x-rays in the medical division. Clin Med August 2013 Vol.13 no. 4 349-352

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An epithermal neutron imager based on detecting alpha particles created via boron neutron capture mechanism is discussed. The diagnostic mainly consists of a mm thick Boron Nitride (BN) sheet (as an alpha converter) in contact with a non-borated cellulose nitride film (LR115 type-II) detector. While the BN absorbs the neutrons in the thermal and epithermal ranges, the fast neutrons register insignificantly on the detector due to their low neutron capture and recoil cross-sections. The use of solid-state nuclear track detectors (SSNTD), unlike image plates, micro-channel plates and scintillators, provide safeguard from the x-rays, gamma-rays and electrons. The diagnostic was tested on a proof-of-principle basis, in front of a laser driven source of moderated neutrons, which suggests the potential of using this diagnostic (BN+SSNTD) for dosimetry and imaging applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CO oxidation on PtO2(110) has been studied using density functional theory calculations. Four possible reaction mechanisms were investigated and the most feasible one is the following: (i) the O at the bridge site of PtO2(110) reacts with CO on the coordinatively unsaturated site (CUS) with a negligible barrier; (ii) O-2 adsorbs on the bridge site and then interacts with CO on the CUS to form an OO-CO complex; (iii) the bond of O-OCO breaks to produce CO2 with a small barrier (0.01 eV). The CO oxidation mechanisms on metals and metal oxides are rationalized by a simple model: The O-surface bonding determines the reactivity on surfaces; it also determines whether the atomic or molecular mechanism is preferred. The reactivity on metal oxides is further found to be related to the 3rd ionization energy of the metal atom.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three supported La0.8Sr0.2MnO3+x catalysts were prepared, one supported on lanthanum-stabilised alumina and two supported on a NiAl2O4 spinel. The catalysts were characterised using X-ray diffraction, transmission electron microscopy and surface area measurements following heat-treatments at temperatures up to 1200 degreesC in air. In the alumina-supported catalyst, a reaction occurred between the active phase and the support at high temperatures, indicating that these materials would be unsuitable for high temperature catalytic combustion. Only in the NiAl2O4-supported catalysts were the supported perovskite phases found to be stable at high temperature. These catalysts showed good methane combustion activity. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aims To determine whether children with infections in early life (recorded routinely in general practice) have a reduced risk of Type 1 diabetes, as would be expected from the hygiene hypothesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report calculations of energy levels, radiative rates and electron impact excitation rates for transitions in H-like N VII, O VIII, F IX, Ne X and Na XI. The general-purpose relativistic atomic structure package (grasp) is adopted for calculating energy levels and radiative rates, while the Dirac atomic R-matrix code (DARC) and the flexible atomic code (FAC) are used for determining the collision strengths and subsequently the excitation rates. Oscillator strengths, radiative rates and line strengths are listed for all E1, E2, M1 and M2 transitions among the lowest 25 levels of the above five ions. Collision strengths have been averaged over a Maxwellian velocity distribution, and the effective collision strengths so obtained are reported over a wide temperature range below 10(7) K. Additionally, lifetimes are also given for all the calculated energy levels of the above five ions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The time dependence of the spatial coherence of the combined spectral lines at 23.2 and 23.6 nm from the Ge XXIII collisionally pumped soft-x-ray laser with a double-slab target is examined within a single nanosecond pulse by use of Young's interference fringes and a streak camera. High source intensity is linked with low spatial coherence and vice verse. Calculations of the source intensity, size, and position have also been made; these calculations refer to a single-slab source. Comparison between the observed and calculated intensities, and of the source sizes both calculated and derived from the Young's fringes by interpretation with a Gaussian model of source emission, show good agreement in general trends. (C) 1998 Optical Society of America [S0740-3224(98)01905-5].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We demonstrate that cosmic rays form filamentary structures in the precursors of supernova remnant shocks due to their self-generated magnetic fields. The cosmic ray filamentation results in the growth of a long-wavelength instability, and naturally couples the rapid non-linear amplification on small scales to larger length-scales. Hybrid magnetohydrodynamics-particle simulations are performed to confirm the effect. The resulting large-scale magnetic field may facilitate the scattering of high-energy cosmic rays as required to accelerate protons beyond the knee in the cosmic ray spectrum at supernova remnant shocks. Filamentation far upstream of the shock may also assist in the escape of cosmic rays from the accelerator.