130 resultados para Wistar Rat
Resumo:
Bradykinin-related peptides (BRPs) represent one of the most widespread and closely studied families of amphibian defensive skin secretion peptides. Apart from canonical bradykinin (RPPGFSPFR) that was first reported in skin extracts of the European brown frog, Rana temporaria, many additional site-substituted, N- and/or C-terminally extended peptides have been isolated from skin extracts and secretions from representative species of the families Ranidae, Hylidae, Bombinatoridae and Leiopelmatidae. The most diverse range of BRPs has been found in ranid frog skin secretions and this probably reflects the diversity and number of species studied and their associated life histories within this taxon. Amolops (torrent or cascade frogs) is a genus within the Ranidae that has been poorly studied. Here we report the presence of two novel BRPs in the skin secretions of the Chinese Wuyi Mountain torrent frog (Amolops wuyiensis). Amolopkinins W1 and W2 are dodecapeptides differing in only one amino acid residue at position 2 (Val/Ala) that are essentially (Leu1, Thr6)-bradykinins extended at the N-terminus by either RVAL (W1) or RAAL (W2). Amolopkinins W1 and W2 are structurally similar to amolopkinin L1 from Amolops loloensis and the major BRP (Leu1, Thr6, Trp8)-bradykinin from the skin of the Japanese frog, Rana sakuraii. A. wuyiensis amolopkinins were separately encoded as single copies within discrete precursors of 61 amino acid residues as deduced from cloned skin cDNA. Synthetic replicates of both peptides were found to potently antagonize the contractile effects of canonical bradykinin on isolated rat ileum smooth muscle preparations. Amolopkinins thus appear to represent a novel sub-family of ranid frog skin secretion BRPs.
Resumo:
Tachykinins are among the most widely-studied families of regulatory peptides characterized by a highly-conserved C-terminal -Phe-X-Gly-Leu-Met.amide motif, which also constitutes the essential bioactive core. The amphibian skin has proved to be a rich source of these peptides with physalaemin from the skin of Physalaemus fuscomaculatus representing the archetypal aromatic tachykinin (X = Tyr or Phe) and kassinin from the skin of Kassina senegalensis representing the archetypal aliphatic tachykinin in which X = Val or Ile. Despite the primary structures of both mature peptides having been known for at least 30 years, neither the structures nor organizations of their biosynthetic precursors have been reported. Here we report the structure and organization of the biosynthetic precursor of kassinin deduced from cDNA cloned from a skin secretion library. In addition, a second precursor cDNA encoding the novel kassinin analog (Thr2, Ile9)-kassinin was identified as was the predicted mature peptide in skin secretion. Both transcripts exhibited a high degree of nucleotide sequence similarity and of open-reading frame translated amino acid sequences of putative precursor proteins. The translated preprotachykinins each consisted of 80 amino acid residues encoding single copies of either kassinin or its site-substituted analog. Synthetic replicates of each kassinin were found to be active on rat urinary bladder smooth muscle at nanomolar concentrations. The structural organization of both preprotachykinins differs from that previously reported for those of Odorrana grahami skin indicating a spectrum of diversity akin to that established for amphibian skin preprobradykinins.
Resumo:
The molecular pathogenesis of diabetic nephropathy (DN), the leading cause of end-stage renal disease worldwide, is complex and not fully understood. Transforming growth factor-beta (TGF-beta1) plays a critical role in many fibrotic disorders, including DN. In this study, we report protein kinase B (PKB/Akt) activation as a downstream event contributing to the pathophysiology of DN. We investigated the potential of PKB/Akt to mediate the profibrotic bioactions of TGF-beta1 in kidney. Treatment of normal rat kidney epithelial cells (NRK52E) with TGF-beta1 resulted in activation of phosphatidylinositol 3-kinase (PI3K) and PKB/Akt as evidenced by increased Ser473 phosphorylation and GSK-3beta phosphorylation. TGF-beta1 also stimulated increased Smad3 phosphorylation in these cells, a response that was insensitive to inhibition of PI3K or PKB/Akt. NRK52E cells displayed a loss of zona occludins 1 and E-cadherin and a gain in vimentin and alpha-smooth muscle actin expression, consistent with the fibrotic actions of TGF-beta1. These effects were blocked with inhibitors of PI3K and PKB/Akt. Furthermore, overexpression of PTEN, the lipid phosphatase regulator of PKB/Akt activation, inhibited TGF-beta1-induced PKB/Akt activation. Interestingly, in the Goto-Kakizaki rat model of type 2 diabetes, we also detected increased phosphorylation of PKB/Akt and its downstream target, GSK-3beta, in the tubules, relative to that in control Wistar rats. Elevated Smad3 phosphorylation was also detected in kidney extracts from Goto-Kakizaki rats with chronic diabetes. Together, these data suggest that TGF-beta1-mediated PKB/Akt activation may be important in renal fibrosis during diabetic nephropathy.
Resumo:
Parkinson's disease (PD)-related dementia affects approximately 40% of PD patients and the severity of this dementia correlates significantly with the density of Lewy body (LB) deposition in the PD brain. Aggregated alpha-synuclein protein is the major component of LB's and the non-amyloid component (NAC) region of alpha-synuclein, residues 61-95, is essential for the aggregation and toxicity of this protein. The current study evaluated the effect of pre-aggregated NAC(61-95) injected into the CA3 area of the dorsal hippocampus of the brain on memory in the rat. Previous research has suggested that oxidative stress processes may play a role in the neuropathology of PD, therefore the effect of treatment with vitamin E, an antioxidant, was also evaluated. Male Sprague-Dawley rats were trained in two-lever operant chambers under an alternating-lever cyclic-ratio (ALCR) schedule of food reinforcement. When responding showed no trends, subjects were divided into four groups. Two groups were injected bilaterally into the dorsal hippocampus with aggregated NAC(61-95) (5 mu l suspension), and two groups were injected bilaterally into the dorsal hippocampus with sterile water (5 mu l). Subgroups were treated with either vitamin E (150 mg/kg in Soya oil) or vehicle (Soya oil) daily. Injection of NAC(61-95) induced memory deficits and vitamin E treatment alleviated these. In addition, NAC(61-95) injections induced activated astrocytes and chronic treatment with vitamin E reduced the numbers of activated astrocytes. These results suggest that aggregated NAC(61-95) and associated oxidative stress, may play a role in the pathogenesis of cognitive deficits seen in PD-induced dementia. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Background: Intermedin (IMD), a novel cardiac peptide related to adrenomedullin (AM), protects against myocardial ischemia-reperfusion injury and attenuates ventricular remodelling. IMD’s actions are mediated by a calcitonin receptor-like receptor in association with receptor activity modifying proteins (RAMPs 1-3). Aim/method: using the spontaneously hypertensive rat (SHR) and normotensive Wistar Kyoto (WKY) rat at 20 weeks of age, to examine (i) the presence of myocardial oxidative stress and concentric hypertrophy; (ii) expression of IMD, AM and receptor components. Results: In left and right ventricular cardiomyocytes from SHR vs. WKY cell width (26% left, 15% right) and mRNA expression of hypertrophic markers ANP (2.7 fold left, 2.7 fold right) and BNP (2.2 fold left, 2.0 fold right) were enhanced. In left ventricular cardiomyocytes only (i) oxidative stress was indicated by increased membrane protein carbonyl content (71%) and augmented production of O2- anion (64%); (ii) IMD (6.8 fold), RAMP1 (2.5 fold) and RAMP3 (2.0 fold) mRNA was increased while AM and RAMP2 mRNA was not altered; (iii) abundance of RAMP1 (by 48%), RAMP2 (by 41%) and RAMP3 (by 90%) monomers in cell membranes was decreased. Conclusion: robust augmentation of IMD expression in hypertrophied left ventricular cardiomyocytes indicates a prominent role for this counter-regulatory peptide in the adaptation of the SHR myocardium to the stresses imposed by chronic hypertension. The local concentration and action of IMD may be further enhanced by down-regulation of NEP within the left ventricle.
Ultrastructure and Immunolocalisation of a myofibroblast cell population within the rat mitral valve
Resumo:
While females are traditionally thought to invest more time and energy into parental care than males, males often invest more resources into searching and displaying for mates, obtaining mates and in male-male conflict. Solitary subterranean mammals perform these activities in a particularly challenging niche, necessitating energetically expensive burrowing to both search for mates and forage for food. This restriction presumably affects males more than females as the former are thought to dig longer tunnels that cover greater distances to search for females. We excavated burrow systems of male and female Cape dune mole rats Bathyergus suillus the, largest truly subterranean mammal, to investigate whether male burrows differ from those of females in ways that reflect mate searching by males. We consider burrow architecture (length, internal dimensions, fractal dimension of tunnel systems, number of nesting chambers and mole mounds on the surface) in relation to mating strategy. Males excavated significantly longer burrow systems with higher fractal dimensions and larger burrow areas than females. Male burrow systems were also significantly farther from one another than females were from other females' burrow systems. However, no sex differences were evident in tunnel cross-sectional area, mass of soil excavated per mound, number of mounds produced per unit burrow length or mass of soil excavated per burrow system. Hence, while males may use their habitat differently from females, they do not appear to differ in the dimensions of the tunnels they create. Thus, exploration and use of the habitat differs between the sexes, which may be a consequence of sex differences in mating behaviour and greater demands for food.