216 resultados para Waterborne infection
Resumo:
Nosema ceranae is an emergent and potentially virulent pathogen of the honey bee (Apis mellifera) that has spread across the world in the last 10 or so years. Its precise origin and timing of spread are currently unclear because of a lack of appropriate genetic markers and inadequate sampling in putative Asian source populations. Though it has been dismissed as a cause of CCD in the USA based on correlational analyses of snapshot sampling of diseased hives, observations of naturally infected colonies suggest that it leads to colony collapse in Spain. Experiments are sorely needed to investigate its impact on individuals and colonies, and to pin down a causal relationship between N. ceranae and colony collapse. Whether N. ceranae is displacing N. apis is uncertain. For temperate zone apiculturalists, global climate change may mean that N. ceranae presents more of a challenge than has hitherto been considered the case.
Resumo:
Measles virus (MV) is highly infectious, and has long been thought to enter the host by infecting epithelial cells of the respiratory tract. However, epithelial cells do not express signaling lymphocyte activation molecule (CD150), which is the high-affinity cellular receptor for wild-type MV strains. We have generated a new recombinant MV strain expressing enhanced green fluorescent protein (EGFP), based on a wild-type genotype B3 virus isolate from Khartoum, Sudan (KS). Cynomolgus macaques were infected with a high dose of rMV(KS)EGFP by aerosol inhalation to ensure that the virus could reach the full range of potential target cells throughout the entire respiratory tract. Animals were euthanized 2, 3, 4 or 5 days post-infection (d.p.i., n?=?3 per time point) and infected (EGFP(+)) cells were identified at all four time points, albeit at low levels 2 and 3 d.p.i. At these earliest time points, MV-infected cells were exclusively detected in the lungs by fluorescence microscopy, histopathology and/or virus isolation from broncho-alveolar lavage cells. On 2 d.p.i., EGFP(+) cells were phenotypically typed as large mononuclear cells present in the alveolar lumen or lining the alveolar epithelium. One to two days later, larger clusters of MV-infected cells were detected in bronchus-associated lymphoid tissue (BALT) and in the tracheo-bronchial lymph nodes. From 4 d.p.i. onward, MV-infected cells were detected in peripheral blood and various lymphoid tissues. In spite of the possibility for the aerosolized virus to infect cells and lymphoid tissues of the upper respiratory tract, MV-infected cells were not detected in either the tonsils or the adenoids until after onset of viremia. These data strongly suggest that in our model MV entered the host at the alveolar level by infecting macrophages or dendritic cells, which traffic the virus to BALT or regional lymph nodes, resulting in local amplification and subsequent systemic dissemination by viremia.
Resumo:
The lymphotropic and myelotropic nature of wild-type measles virus (wt-MV) is well recognized, with dendritic cells and lymphocytes expressing the MV receptor CD150 mediating systemic spread of the virus. Infection of respiratory epithelial cells has long been considered crucial for entry of MV into the body. However, the lack of detectable CD150 on these cells raises the issue of their importance in the pathogenesis of measles. This study utilized a combination of in vitro, ex vivo and in vivo model systems to characterize the susceptibility of epithelial cells to wt-MV of proven pathogenicity. Low numbers of MV-infected epithelial cells in close proximity to underlying infected lymphocytes or myeloid cells suggested infection via the basolateral side of the epithelium in the macaque model. In primary cultures of human bronchial epithelial cells, foci of MV-infected cells were only observed following infection via the basolateral cell surface. The extent of infection in primary cells was enhanced both in vitro and in ex vivo cornea rim tissue by disrupting the integrity of the cells prior to the application of virus. This demonstrated that, whilst epithelial cells may not be the primary target cells for wt-MV, areas of epithelium in which tight junctions are disrupted can become infected using high m.o.i. The low numbers of MV-infected epithelial cells observed in vivo in conjunction with the absence of infectious virus release from infected primary cell cultures suggest that epithelial cells have a peripheral role in MV transmission.
Resumo:
The liver fluke, Fasciola hepatica causes liver fluke disease, or fasciolosis, in ruminants such as cattle and sheep. An effective vaccine against the helminth parasite is essential to reduce our reliance on anthelmintics, particularly in light of frequent reports of resistance to some frontline drugs. In our study, Friesian cattle (13 per group) were vaccinated with recombinant F. hepatica cathepsin L1 protease (rFhCL1) formulated in mineral-oil based adjuvants, Montanide (TM) ISA 70VG and ISA 206VG. Following vaccination the animals were exposed to fluke-contaminated pastures for 13 weeks. At slaughter, there was a significant reduction in fluke burden of 48.2% in the cattle in both vaccinated groups, relative to the control non-vaccinated group, at p
Resumo:
Respiratory syncytial virus (RSV) is the major viral cause of severe pulmonary disease in young infants worldwide. However, the mechanisms by which RSV causes disease in humans remain poorly understood. To help bridge this gap, we developed an ex vivo/in vitro model of RSV infection based on well-differentiated primary pediatric bronchial epithelial cells (WD-PBECs), the primary targets of RSV infection in vivo. Our RSV/WD-PBEC model demonstrated remarkable similarities to hallmarks of RSV infection in infant lungs. These hallmarks included restriction of infection to noncontiguous or small clumps of apical ciliated and occasional nonciliated epithelial cells, apoptosis and sloughing of apical epithelial cells, occasional syncytium formation, goblet cell hyperplasia/metaplasia, and mucus hypersecretion. RSV was shed exclusively from the apical surface at titers consistent with those in airway aspirates from hospitalized infants. Furthermore, secretion of proinflammatory chemokines such as CXCL10, CCL5, IL-6, and CXCL8 reflected those chemokines present in airway aspirates. Interestingly, a recent RSV clinical isolate induced more cytopathogenesis than the prototypic A2 strain. Our findings indicate that this RSV/WD-PBEC model provides an authentic surrogate for RSV infection of airway epithelium in vivo. As such, this model may provide insights into RSV pathogenesis in humans that ultimately lead to successful RSV vaccines or therapeutics.
Resumo:
Background: Nursing homes for older people provide an environment likely to promote the acquisition and spread of meticillin-resistant Staphylococcus aureus (MRSA), putting residents at increased risk of colonisation and infection. It is recognised that infection control strategies are important in preventing and controlling MRSA transmission.
Objectives: The objective of this review was to determine the effects of infection control strategies for preventing the transmission of MRSA in nursing homes for older people.
Search strategy: We searched the Cochrane Central Register of Controlled Trials (CENTRAL, The Cochrane Library 2009, Issue 2), the Cochrane Wounds Group Specialised Register (searched May 29th, 2009). We also searched MEDLINE (from 1950 to May Week 4 2009), Ovid EMBASE (1980 to 2009 Week 21), EBSCO CINAHL (1982 to May Week 4 2009), British Nursing Index (1985 to May 2009), DARE (1992 to May 2009), Web of Science (1981 to May 2009), and the Health Technology Assessment (HTA) website (1988 to May 2009). Research in progress was sought through Current Clinical Trials (www.controlled-trials.com), Medical Research Council Research portfolio, and HSRPRoj (current USA projects). SIGLE was also searched in order to identify atypical material which was not accessible through more conventional sources.
Selection criteria: All randomised and controlled clinical trials, controlled before and after studies and interrupted time series studies of infection control interventions in nursing homes for older people were eligible for inclusion.
Data collection and analysis: Two authors independently reviewed the results of the searches.
Main results: Since no studies met the selection criteria, neither a meta-analysis nor a narrative description of studies was possible.
Authors' conclusions: The lack of studies in this field is surprising. Nursing homes for older people provide an environment likely to promote the acquisition and spread of infection, with observational studies repeatedly reporting that being a resident of a nursing home increases the risk of MRSA colonisation. Much of the evidence for recently-issued United Kingdom guidelines for the control and prevention of MRSA in health care facilities was generated in the acute care setting. It may not be possible to transfer such strategies directly to the nursing home environment, which serves as both a healthcare setting and a resident's home. Rigorous studies should be conducted in nursing homes, to test interventions that have been specifically designed for this unique environment.
Resumo:
Q fever is caused by Coxiella burnetii and often has an insidious clinical presentation. We describe a rare case of Q fever infection of an aortic graft presenting with pyrexia and constant severe midlumbar pain due to erosion of multiple vertebral bodies. After successful treatment with graft resection and extra-anatomic vascular reconstruction, the patient continues on lifelong antibiotic therapy. We also present regional Q fever epidemiologic data together with a review of all previously documented cases of Q fever infections of vascular prostheses.