94 resultados para Vitamin D3


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background/Purpose:Juvenile idiopathic arthritis (JIA) comprises a poorly understood group of chronic, childhood onset, autoimmune diseases with variable clinical outcomes. We investigated whether profiling of the synovial fluid (SF) proteome by a fluorescent dye based, two-dimensional gel (DIGE) approach could distinguish the subset of patients in whom inflammation extends to affect a large number of joints, early in the disease process. The post-translational modifications to candidate protein markers were verified by a novel deglycosylation strategy.Methods:SF samples from 57 patients were obtained around time of initial diagnosis of JIA. At 1 year from inclusion patients were categorized according to ILAR criteria as oligoarticular arthritis (n=26), extended oligoarticular (n=8) and polyarticular disease (n=18). SF samples were labeled with Cy dyes and separated by two-dimensional electrophoresis. Multivariate analyses were used to isolate a panel of proteins which distinguish patient subgroups. Proteins were identified using MALDI-TOF mass spectrometry with vitamin D binding protein (VDBP) expression and siaylation further verified by immunohistochemistry, ELISA test and immunoprecipitation. Candidate biomarkers were compared to conventional inflammation measure C-reactive protein (CRP). Sialic acid residues were enzymatically cleaved from immunopurified SF VDBP, enriched by hydrophilic interaction liquid chromatography (HILIC) and analysed by mass spectrometry.Results:Hierarchical clustering based on the expression levels of a set of 23 proteins segregated the extended-to-be oligoarticular from the oligoarticular patients. A cleaved isoform of VDBP, spot 873, is present at significantly reduced levels in the SF of oligoarticular patients at risk of disease extension, relative to other subgroups (p<0.05). Conversely total levels of vitamin D binding protein are elevated in plasma and ROC curves indicate an improved diagnostic sensitivity to detect patients at risk of disease extension, over both spot 873 and CRP levels. Sialysed forms of intact immunopurified VDBP were more prevalent in persistent oligoarticular patient synovial fluids.Conclusion:The data indicate that a subset of the synovial fluid proteome may be used to stratify patients to determine risk of disease extension. Reduced conversion of VDBP to a macrophage activation factor may represent a novel pathway contributing to increased risk of disease extension in JIA patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vitamin D has been associated with reduced risk of many cancers, but evidence for oesophageal cancer is mixed. To clarify the role of Vitamin D, we performed a systematic review and meta-analysis to evaluate the association of Vitamin D exposures and oesophageal neoplasia, including adenocarcinoma, squamous cell carcinoma (SCC), Barrett's oesophagus and squamous dysplasia. Ovid MEDLINE, EMBASE and Web of Science were searched from inception to September 2015. Fifteen publications in relation to circulating 25-hydroxyvitamin D (n=3), Vitamin D intake (n=4), UVB exposure (n=1), and genetic factors (n=7) were retrieved. Higher 25-OHD was associated with increased risk of cancer (adenocarcinoma or SCC, OR=1.39;95%CI:1.04-1.74), with the majority of participants coming from China. No association was observed between Vitamin D intake and risk of cancer overall (OR=1.03;0.65-1.42); however, a non-significantly increased risk for adenocarcinoma (OR=1.45;0.65-2.24) and non-significantly decreased risk for SCC (OR=0.80;0.48-1.12) were observed. One study reported a decreased risk of adenocarcinoma with higher UVB exposure. A decreased risk was found for VDR haplotype rs2238135(G)/rs1989969(T) carriers, OR=0.45;0.00-0.91, and a suggestive association was observed for rs2107301. No consistent associations were observed between Vitamin D exposures and occurrence of oesophageal lesions. Further adequately powered, well-designed studies are needed before conclusions can be made.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Nicotinamide riboside (NR) is a recently discovered NAD+ precursor vitamin with a unique biosynthetic pathway. Although the presence of NR in cow milk has been known for more than a decade, the concentration of NR with respect to the other NAD+ precursors was unknown.

Objective: We aimed to determine NAD+ precursor vitamin concentration in raw samples of milk from individual cows and from commercially available cow milk.

Methods: LC tandem mass spectrometry and isotope dilution technologies were used to quantify NAD+ precursor vitamin concentration and to measure NR stability in raw and commercial milk. Nuclear magnetic resonance (NMR) spectroscopy was used to test for NR binding to substances in milk.

Results: Cow milk typically contained ∼12 μmol NAD+ precursor vitamins/L, of which 60% was present as nicotinamide and 40% was present as NR. Nicotinic acid and other NAD+ metabolites were below the limits of detection. Milk from samples testing positive for Staphylococcus aureus contained lower concentrations of NR (Spearman ρ = −0.58, P = 0.014), and NR was degraded by S. aureus. Conventional milk contained more NR than milk sold as organic. Nonetheless, NR was stable in organic milk and exhibited an NMR spectrum consistent with association with a protein fraction in skim milk.

Conclusions: NR is a major NAD+ precursor vitamin in cow milk. Control of S. aureus may be important to preserve the NAD+ precursor vitamin concentration of milk.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genome-wide association studies (GWAS) have identified several risk variants for late-onset Alzheimer's disease (LOAD)1, 2. These common variants have replicable but small effects on LOAD risk and generally do not have obvious functional effects. Low-frequency coding variants, not detected by GWAS, are predicted to include functional variants with larger effects on risk. To identify low-frequency coding variants with large effects on LOAD risk, we carried out whole-exome sequencing (WES) in 14 large LOAD families and follow-up analyses of the candidate variants in several large LOAD case–control data sets. A rare variant in PLD3 (phospholipase D3; Val232Met) segregated with disease status in two independent families and doubled risk for Alzheimer’s disease in seven independent case–control series with a total of more than 11,000 cases and controls of European descent. Gene-based burden analyses in 4,387 cases and controls of European descent and 302 African American cases and controls, with complete sequence data for PLD3, reveal that several variants in this gene increase risk for Alzheimer’s disease in both populations. PLD3 is highly expressed in brain regions that are vulnerable to Alzheimer’s disease pathology, including hippocampus and cortex, and is expressed at significantly lower levels in neurons from Alzheimer’s disease brains compared to control brains. Overexpression of PLD3 leads to a significant decrease in intracellular amyloid-β precursor protein (APP) and extracellular Aβ42 and Aβ40 (the 42- and 40-residue isoforms of the amyloid-β peptide), and knockdown of PLD3 leads to a significant increase in extracellular Aβ42 and Aβ40. Together, our genetic and functional data indicate that carriers of PLD3 coding variants have a twofold increased risk for LOAD and that PLD3 influences APP processing. This study provides an example of how densely affected families may help to identify rare variants with large effects on risk for disease or other complex traits.