180 resultados para Virtual Prototyping


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Models of professional development for teachers have been criticized for not being embedded in the context in which teachers are familiar, namely their own classrooms. This paper discusses an adapted-Continuous Practice Improvement model, which qualitative findings indicate was effective in facilitating the transfer of creative and innovative teaching approaches from the expert or Resident Teacher’s school to the novice or Visiting Teachers’ classrooms over the duration of the project. The cultural shift needed to embed and extend the use of online teaching across the school was achieved through the positive support and commitment of the principals in the Visiting Teachers’ schools, combined with the success of the professional development activities offered by the Visiting Teachers to their school-based colleagues.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traditionally, education and training in pathology has been delivered using textbooks, glass slides and conventional microscopy. Over the last two decades, the number of web-based pathology resources has expanded dramatically with centralized pathological resources being delivered to many students simultaneously. Recently, whole slide imaging technology allows glass slides to be scanned and viewed on a computer screen via dedicated software. This technology is referred to as virtual microscopy and has created enormous opportunities in pathological training and education. Students are able to learn key histopathological skills, e.g. to identify areas of diagnostic relevance from an entire slide, via a web-based computer environment. Students no longer need to be in the same room as the slides. New human–computer interfaces are also being developed using more natural touch technology to enhance the manipulation of digitized slides. Several major initiatives are also underway introducing online competency and diagnostic decision analysis using virtual microscopy and have important future roles in accreditation and recertification. Finally, researchers are investigating how pathological decision-making is achieved using virtual microscopy and modern eyetracking devices. Virtual microscopy and digital pathology will continue to improve how pathology training and education is delivered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The finite element method plays an extremely important role in forging process design as it provides a valid means to quantify forging errors and thereby govern die shape modification to improve the dimensional accuracy of the component. However, this dependency on process simulation could raise significant problems and present a major drawback if the finite element simulation results were inaccurate. This paper presents a novel approach to assess the dimensional accuracy and shape quality of aeroengine blades formed from finite element hot-forging simulation. The proposed virtual inspection system uses conventional algorithms adopted by modern coordinate measurement processes as well as the latest free-form surface evaluation techniques to provide a robust framework for virtual forging error assessment. Established techniques for the physical registration of real components have been adapted to localise virtual models in relation to a nominal Design Coordinate System. Blades are then automatically analysed using a series of intelligent routines to generate measurement data and compute dimensional errors. The results of a comparison study indicate that the virtual inspection results and actual coordinate measurement data are highly comparable, validating the approach as an effective and accurate means to quantify forging error in a virtual environment. Consequently, this provides adequate justification for the implementation of the virtual inspection system in the virtual process design, modelling and validation of forged aeroengine blades in industry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To create smiling virtual characters, the different morphological and dynamic characteristics of the virtual characters smiles and the impact of the virtual characters smiling behavior on the users need to be identified. For this purpose, we have collected two corpora: one directly created by users and the other resulting from the interaction between virtual characters and users. We present in details these two corpora in the article.