103 resultados para Viral variants
Resumo:
Respiratory viral infections are a common cause of acute coughing, an irritating symptom for the patient and an important mechanism of transmission for the virus. Although poorly described, the inflammatory consequences of infection likely induce coughing by chemical (inflammatory mediator) or mechanical (mucous) activation of the cough-evoking sensory nerves that innervate the airway wall. For some individuals, acute cough can evolve into a chronic condition, in which cough and aberrant airway sensations long outlast the initial viral infection. This suggests that some viruses have the capacity to induce persistent plasticity in the neural pathways mediating cough. In this brief review we present the clinical evidence of acute and chronic neural dysfunction following viral respiratory tract infections and explore possible mechanisms by which the nervous system may undergo activation, sensitization and plasticity.
Resumo:
Autophagic flux involves formation of autophagosomes and their degradation by lysosomes. Autophagy can either promote or restrict viral replication. In the case of Dengue virus (DENV) several studies report that autophagy supports the viral replication cycle, and describe an increase of autophagic vesicles (AVs) following infection. However, it is unknown how autophagic flux is altered to result in increased AVs. To address this question, and gain insight into the role of autophagy during DENV infection, we established an unbiased, image-based flow cytometry approach to quantify autophagic flux under normal growth conditions and in response to activation by nutrient deprivation or the mTOR inhibitor Torin1. We found that DENV induced an initial activation of autophagic flux, followed by inhibition of general and specific autophagy. Early after infection, basal and activated autophagic flux was enhanced. However, during established replication, basal and Torin1-activated autophagic flux was blocked, while autophagic flux activated by nutrient deprivation was reduced, indicating a block to AV formation and reduced AV degradation capacity. During late infection AV levels increased as a result of inefficient fusion of autophagosomes with lysosomes. Additionally, endo-lysosomal trafficking was suppressed, while lysosomal activities were increased. We further determined that DENV infection progressively reduced levels of the autophagy receptor SQSTM1/p62 via proteasomal degradation. Importantly, stable over-expression of p62 significantly suppressed DENV replication suggesting a novel role for p62 as viral restriction factor. Overall our findings indicate that in the course of DENV infection, autophagy shifts from a supporting to an anti-viral role, which is countered by DENV.
IMPORTANCE: Autophagic flux is a dynamic process starting with the formation of autophagosomes and ending with their degradation after fusion with lysosomes. Autophagy impacts the replication cycle of many viruses. However, thus far the dynamics of autophagy in case of Dengue virus (DENV) infections has not been systematically quantified. Therefore, we employed high-content, imaging-based flow cytometry to quantify autophagic flux and endo-lysosomal trafficking in response to DENV infection. We report that DENV induced an initial activation of autophagic flux, followed by inhibition of general and specific autophagy. Further, lysosomal activity was increased, but endo-lysosomal trafficking was suppressed confirming the block of autophagic flux. Importantly, we provide evidence that p62, an autophagy receptor, restrict DENV replication and was specifically depleted in DENV-infected cells via increased proteasomal degradation. These results suggest that during DENV infection autophagy shifts from a pro- to an antiviral cellular process, which is counteracted by the virus.
Resumo:
BACKGROUND: Epidemiological and clinical studies suggest comorbidity between prostate cancer (PCA) and cardiovascular disease (CVD) risk factors. However, the relationship between these two phenotypes is still not well understood. Here we sought to identify shared genetic loci between PCA and CVD risk factors.
METHODS: We applied a genetic epidemiology method based on conjunction false discovery rate (FDR) that combines summary statistics from different genome-wide association studies (GWAS), and allows identification of genetic overlap between two phenotypes. We evaluated summary statistics from large, multi-centre GWA studies of PCA (n=50 000) and CVD risk factors (n=200 000) [triglycerides (TG), low-density lipoprotein (LDL) cholesterol and high-density lipoprotein (HDL) cholesterol, systolic blood pressure, body mass index, waist-hip ratio and type 2 diabetes (T2D)]. Enrichment of single nucleotide polymorphisms (SNPs) associated with PCA and CVD risk factors was assessed with conditional quantile-quantile plots and the Anderson-Darling test. Moreover, we pinpointed shared loci using conjunction FDR.
RESULTS: We found the strongest enrichment of P-values in PCA was conditional on LDL and conditional on TG. In contrast, we found only weak enrichment conditional on HDL or conditional on the other traits investigated. Conjunction FDR identified altogether 17 loci; 10 loci were associated with PCA and LDL, 3 loci were associated with PCA and TG and additionally 4 loci were associated with PCA, LDL and TG jointly (conjunction FDR <0.01). For T2D, we detected one locus adjacent to HNF1B.
CONCLUSIONS: We found polygenic overlap between PCA predisposition and blood lipids, in particular LDL and TG, and identified 17 pleiotropic gene loci between PCA and LDL, and PCA and TG, respectively. These findings provide novel pathobiological insights and may have implications for trials using targeting lipid-lowering agents in a prevention or cancer setting.
Resumo:
Integrins (ITGs) are key elements in cancer biology, regulating tumor growth, angiogenesis and lymphangiogenesis through interactions of the tumor cells with the microenvironment. Moving from the hypothesis that ITGs could have different effects in stage II and III colon cancer, we tested whether a comprehensive panel of germline single-nucleotide polymorphisms (SNPs) in ITG genes could predict stage-specific time to tumor recurrence (TTR). A total of 234 patients treated with 5-fluorouracil-based chemotherapy at the University of Southern California were included in this study. Whole-blood samples were analyzed for germline SNPs in ITG genes using PCR-restriction fragment length polymorphism or direct DNA sequencing. In the multivariable analysis, stage II colon cancer patients with at least one G allele for ITGB3 rs4642 had higher risk of recurrence (hazard ratio (HR)=4.027, 95% confidence interval (95% CI) 1.556-10.421, P=0.004). This association was also significant in the combined stage II-III cohort (HR=1.975, 95% CI 1.194-3.269, P=0.008). The predominant role of ITGB3 rs4642 in stage II diseases was confirmed using recursive partitioning, showing that ITGB3 rs4642 was the most important factor in stage II diseases. In contrast, in stage III diseases the combined analysis of ITGB1 rs2298141 and ITGA4 rs7562325 allowed to identify three distinct prognostic subgroups (P=0.009). The interaction between stage and the combined ITGB1 rs2298141 and ITGA4 rs7562325 on TTR was significant (P=0.025). This study identifies germline polymorphisms in ITG genes as independent stage-specific prognostic markers for stage II and III colon cancer. These data may help to select subgroups of patients who may benefit from ITG-targeted treatments.
Resumo:
In patients with breast cancer (BC), deregulation of estrogen receptor (ERα) activity may account for most resistance to endocrine therapies. Our previous study used a whole-human kinome siRNA screen to identify functional actors in ERα modulation and showed the implication of proteins kinase suppressors of ras (KSR1). From those findings we evaluated the clinical impact of KSR1 variants in patients with ERα+ BC treated with TAM. DNA was obtained from 222 patients with advanced ERα+ BC treated with TAM who had undergone surgery from 1981 to 2003. We selected three potentially functional relevant KSR1 polymorphisms; two within the 3'UTR (rs224190, rs1075952) and one in the coding exon 7 (rs2293180). The primary end points were overall survival (OS) and disease-free survival (DFS). After a 6.4-year median follow-up, patients carrying the rs2241906 TT genotype showed shorter DFS (2.1 vs 7.1 years, P=0.005) and OS (2.6 vs 8.4 years P=0.002) than those with the TC or TT genotypes. Those associations remained significant in the multivariable analysis adjusting age, lymph node status, LMTK3 and IGFR variants and HER2 status. The polymorphisms rs2241906 and rs1075952 were in linkage disequilibrium. No association was shown between rs2293180 and survival. Among the actors of ERα signaling, KSR1 rs2241906 variants may predict survival in patients with advanced ERα+ BC treated with adjuvant TAM.
Resumo:
Wnt/β-catenin signaling has a central role in the development and progression of most colon cancers (CCs). Germline variants in Wnt/β-catenin pathway genes may result in altered gene function and/or activity, thereby causing inter-individual differences in relation to tumor recurrence capacity and chemoresistance. We investigated germline polymorphisms in a comprehensive panel of Wnt/β-catenin pathway genes to predict time to tumor recurrence (TTR) in patients with stage III and high-risk stage II CC. A total of 234 patients treated with 5-fluorouracil-based chemotherapy were included in this study. Whole-blood samples were analyzed for putative functional germline polymorphisms in SFRP3, SFRP4, DKK2, DKK3, Axin2, APC, TCF7L2, WNT5B, CXXC4, NOTCH2 and GLI1 genes by PCR-based restriction fragment-length polymorphism or direct DNA sequencing. Polymorphisms with statistical significance were validated in an independent study cohort. The minor allele of WNT5B rs2010851 T>G was significantly associated with a shorter TTR (10.7 vs 4.9 years; hazard ratio: 2.48; 95% CI, 0.96-6.38; P=0.04) in high-risk stage II CC patients. This result remained significant in multivariate Cox's regression analysis. This study shows that the WNT5B germline variant rs2010851 was significantly identified as a stage-dependent prognostic marker for CC patients after 5-fluorouracil-based adjuvant therapy.
Resumo:
PURPOSE: Recent evidence suggests that cancer stem cells (CSC) are responsible for key elements of colon cancer progression and recurrence. Germline variants in CSC genes may result in altered gene function and/or activity, thereby causing interindividual differences in a patient's tumor recurrence capacity and chemoresistance. We investigated germline polymorphisms in a comprehensive panel of CSC genes to predict time to tumor recurrence (TTR) in patients with stage III and high-risk stage II colon cancer.
EXPERIMENTAL DESIGN: A total of 234 patients treated with 5-fluorouracil-based chemotherapy at the University of Southern California were included in this study. Whole blood samples were analyzed for germline polymorphisms in genes that have been previously associated with colon CSC (CD44, Prominin-1, DPP4, EpCAM, ALCAM, Msi-1, ITGB1, CD24, LGR5, and ALDH1A1) by PCR-RFLP or direct DNA-sequencing.
RESULTS: The minor alleles of CD44 rs8193 C>T, ALCAM rs1157 G>A, and LGR5 rs17109924 T>C were significantly associated with increased TTR (9.4 vs. 5.4 years; HR, 0.51; 95% CI: 0.35-0.93; P = 0.022; 11.3 vs. 5.7 years; HR, 0.56; 95% CI: 0.33-0.94; P = 0.024, and 10.7 vs. 5.7 years; HR, 0.33; 95% CI: 0.12-0.90; P = 0.023, respectively) and remained significant in the multivariate analysis stratified by ethnicity. In recursive partitioning, a specific gene variant profile including LGR5 rs17109924, CD44 rs8193, and ALDH1A1 rs1342024 represented a high-risk subgroup with a median TTR of 1.7 years (HR, 6.71, 95% CI: 2.71-16.63, P < 0.001).
CONCLUSION: This is the first study identifying common germline variants in colon CSC genes as independent prognostic markers for stage III and high-risk stage II colon cancer patients.
Resumo:
Introduction: The chromosome 9p21 locus has been identified as a marker of coronary artery disease. In this locus studies have focused on variations in the ANRIL gene that has also been identified as a strong candidate for association with aggressive periodontitis (AgP).
Objective: To investigate possible associations between gene variants of ANRIL and AgP in European and African populations.
Methods: European AgP cases (n= 213) and age-matched periodontally healthy controls (n= 81) were recruited from centres in the United Kingdom (Belfast, Glasgow, Newcastle and London). African AgP cases (n= 95) and controls (n= 105) were recruited in Khartoum, Sudan. Five single nucleotide polymorphisms (SNPs) in ANRIL were genotyped using Sequenom and analysed using Haploview with permutation testing to correct for multiple candidates. Odds ratios (OR) and 95% confidence intervals (95%CI) were calculated.
Results: In the European subjects there was a significant association between rs518394 (p=0.0013; OR = 1.81, 95%CI 1.26-2.61) and rs1333049 (p=0.0028; OR = 1.75, 95%CI 1.21-2.52) and AgP. These associations remained significant after permutation testing. In addition there was an association between rs 1360590 (p=0.035) and AgP in females. In the African subjects there was a significant association between only one SNP rs1537415 and AgP (p=0.036; OR = 1.59, 95%CI 1.04-2.43), however, this was not significant following permutation testing. There were no significant associations with rs3217992 in either population.
Conclusions: SNP variants in the ANRIL locus were shown to be significantly associated with AgP in a European population and for the first time in an African population confirming this as the best replicated locus for aggressive periodontitis.
Resumo:
Purpose: To investigate how potentially functional genetic variants are coinherited on each of four common complement factor H (CFH) and CFH-related gene haplotypes and to measure expression of these genes in eye and liver tissues.
Methods: We sequenced the CFH region in four individuals (one homozygote for each of four common CFH region haplotypes) to identify all genetic variants. We studied associations between the haplotypes and AMD phenotypes in 2157 cases and 1150 controls. We examined RNA-seq profiles in macular and peripheral retina and retinal pigment epithelium/choroid/sclera (RCS) from eight eye donors and three liver samples.
Results: The haplotypic coinheritance of potentially functional variants (including missense variants, novel splice sites, and the CFHR3–CFHR1 deletion) was described for the four common haplotypes. Expression of the short and long CFH transcripts differed markedly between the retina and liver. We found no expression of any of the five CFH-related genes in the retina or RCS, in contrast to the liver, which is the main source of the circulating proteins.
Conclusions: We identified all genetic variants on common CFH region haplotypes and described their coinheritance. Understanding their functional effects will be key to developing and stratifying AMD therapies. The small scale of our expression study prevented us from investigating the relationships between CFH region haplotypes and their expression, and it will take time and collaboration to develop epidemiologic-scale studies. However, the striking difference between systemic and ocular expression of complement regulators shown in this study suggests important implications for the development of intraocular and systemic treatments.
Resumo:
Lough Neagh is the largest and the most economically important lake in Ireland. It is also one of the most nutrient rich amongst the world's major lakes. In this study, 16S rRNA analysis of total metagenomic DNA from the water column of Lough Neagh has revealed a high proportion of Cyanobacteria and low levels of Actinobacteria, Acidobacteria, Chloroflexi, and Firmicutes. The planktonic virome of Lough Neagh has been sequenced and 2,298,791 2×300 bp Illumina reads analysed. Comparison with previously characterised lakes demonstrates that the Lough Neagh viral community has the highest level of sequence diversity. Only about 15% of reads had homologs in the RefSeq database and tailed bacteriophages (Caudovirales) were identified as a major grouping. Within the Caudovirales, the Podoviridae and Siphoviridae were the two most dominant families (34.3% and 32.8% of the reads with sequence homology to the RefSeq database), while ssDNA bacteriophages constituted less than 1% of the virome. Putative cyanophages were found to be abundant. 66,450 viral contigs were assembled with the largest one being 58,805 bp; its existence, and that of another 34,467 bp contig, in the water column was confirmed. Analysis of the contigs confirmed the high abundance of cyanophages in the water column.