285 resultados para Vascular wall
Resumo:
OBJECTIVE:
To compare the performance of patients with mild-moderate Alzheimer's disease (AD) and vascular dementia (VaD) on tests of information processing and attention.
METHOD:
Patients with AD (n=75) and VaD (n=46) were recruited from a memory clinic along with dementia-free participants (n=28). They underwent specific tests of attention from the Cognitive Drug Research battery, and pen and paper tests including Colour Trails A and B and Stroop. All patients had a CT brain scan that was independently scored for white-matter change/ischaemia.
RESULTS:
Attention was impaired in both AD and VaD patients. VaD patients had more impaired choice reaction times and were less accurate on a vigilance test measuring sustained attention. Deficits in selective and divided attention occurred in both patient groups and showed the strongest correlations with Mini Mental State Examination scores.
CONCLUSION:
This study demonstrates problems with the attentional network in mild-moderate AD and VaD. The authors propose that attention should be tested routinely in a memory clinic setting.
Resumo:
Changes in domain wall mobility, caused by the presence of antinotches in single crystal BaTiO3 nanowires, have been investigated. While antinotches appeared to cause a slight broadening in the distribution of switching events, observed as a function of applied electric field (inferred from capacitance-voltage measurements), the effect was often subtle. Greater clarity of information was obtained from Rayleigh analysis of the capacitance variation with ac field amplitude. Here the magnitude of the domain wall mobility parameter (R) associated with irreversible wall movements was found to be reduced by the presence of antinotches - an effect which became more noticeable on heating toward the Curie temperature. The reduction in this domain wall mobility was contrasted with the noticeable enhancement found previously in ferroelectric wires with notches. Finite element modeling of the electric field, developed in the nanowires during switching, revealed regions of increased and decreased local field at the center of the notch and antinotch structures, respectively; the absolute magnitude of field enhancement in the notch centers was considerably greater than the field reduction in the center of the antinotches and this was commensurate with the manner in, and degree to, which domain wall mobility appeared to be affected. We therefore conclude that the main mechanism by which morphology alters the irreversible component of the domain wall mobility in ferroelectric wire structures is via the manner in which morphological variations alter the spatial distribution of the electric field.
Resumo:
Objective: To compare performance of patients with mild-moderate Alzheimer's disease (AD) and vascular dementia (VaD) on tests of executive functioning and working memory.
Methods: Patients with AD (n = 76) and VaD (n = 46) were recruited from a memory clinic along with dementia free participants (n = 28). They underwent specific tests of working memory from the Cognitive Drug Research (CDR) battery and pen and paper tests of executive function including CLOX 1 & 2, EXIT25 and a test of verbal fluency (COWAT). All patients had a CT brain scan which was independently scored for white matter change/ischaemia.
Results: The AD and VaD groups were significantly impaired on all measures of working memory and executive functioning compared to the disease free group. There were no significant differences between the AD and VaD groups on any measure. Z-scores confirmed the pattern of impairment in executive functioning and working memory was largely equivalent in both patient groups. Small to moderate correlations were seen between the MMSE and the neurocognitive scores in both patient groups and the pattern of correlations was also very similar in both patient groups.
Conclusions: This study demonstrates sizeable executive functioning and working memory impairments in patients with mild-moderate AD and VaD but no significant differences between the disease groups. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
The apolipoprotein (APOE) epsilon4 allele is a genetic risk factor for the development of Alzheimer's disease (AD). It has also been associated with vascular dementia (VaD) in some but not all studies. Previous studies have examined the role of APOE in predicting performance on cognitive tests in both demented and non-demented populations. In cognitively intact individuals, statistically significant group differences between APOE epsilon4 carriers and non-carriers have been demonstrated for several cognitive domains. In AD studies of the impact of APOE epsilon4 on cognition have been conflicting while no previous study has assessed cognition and impact of APOE epsilon4 in VaD. In this study we investigated the impact of APOE epsilon4 on performance in neuropsychological tests including information processing speed in patients with mild-moderate AD and VaD. We incorporated both computerized and pen and paper tests to ensure a sensitive method of assessing cognition. 109 patients participated in the study (VaD=41, AD=68). Neurocognitive performance of 44 epsilon4 present AD patients was compared to 24 epsilon4absent patients and performance of 23 epsilon4 present VaD patients was compared to 18 epsilon4 absent patients. There was evidence that APOE epsilon4 conferred a risk of poorer cognitive functioning in both patient groups. In the AD group presence of epsilon4 conferred a negative impact on some measures of speed of information processing and immediate recall while in the VaD group epsilon4 present patients had evidence of poorer accuracy on tasks such as choice reaction time and spatial working memory. In AD and VaD groups epsilon4 present patients showed impairment in selective attention. These findings provide further support of the negative impact of the epsilon4 allele in cognition.
Resumo:
PURPOSE: We investigated the 3-dimensional morphological arrangement of KIT positive interstitial cells of Cajal in the human bladder and explored their structural interactions with neighboring cells.MATERIALS AND METHODS: Human bladder biopsy samples were prepared for immunohistochemistry/confocal or transmission electron microscopy.RESULTS: Whole mount, flat sheet preparations labeled with anti-KIT (Merck, Darmstadt, Germany) contained several immunopositive interstitial cell of Cajal populations. A network of stellate interstitial cells of Cajal in the lamina propria made structural connections with a cholinergic nerve plexus. Vimentin positive cells of several morphologies were present in the lamina propria, presumably including fibroblasts, interstitial cells of Cajal and other cells of mesenchymal origin. Microvessels were abundant in this region and branched, elongated KIT positive interstitial cells of Cajal were found discretely along the vessel axis with each perivascular interstitial cell of Cajal associated with at least 6 vascular smooth muscle cells. Detrusor interstitial cells of Cajal were spindle-shaped, branched cells tracking the smooth muscle bundles, closely associated with smooth muscle cells and vesicular acetylcholine transferase nerves. Rounded, nonbranched KIT positive cells were more numerous in the lamina propria than in the detrusor and were immunopositive for anti-mast cell tryptase. Transmission electron microscopy revealed cells with the ultrastructural characteristics of interstitial cells of Cajal throughout the human bladder wall.CONCLUSIONS: The human bladder contains a network of KIT positive interstitial cells of Cajal in the lamina propria, which make frequent connections with a cholinergic nerve plexus. Novel perivascular interstitial cells of Cajal were discovered close to vascular smooth muscle cells, suggesting interstitial cells of Cajal-vascular coupling in the bladder. KIT positive detrusor interstitial cells of Cajal tracked smooth muscle bundles and were associated with nerves, perhaps showing a functional tri-unit controlling bladder contractility.
Resumo:
Near-infrared (NIR) imaging was used to observe water vapour flow in a gas-solid fluidized bed reactor. The technique consisted of a broadband light, an optical filter with a bandwidth centred on strong water vapour absorptions, a Vidicon NIR camera, a nozzle from which an optically active mixture of gas and water vapour was trans-illuminated by an NIR beam and collected data of transmittance were normalized to actual optical path. The procedure was applied to a thin fluidized bed reactor with a low aspect ratio of tube to particle diameters (D-1/d(p)) in order to validate the wall effect on flow dynamics and mass transfer during the reduction of ceria-silica by hydrogen. High concentrations of water vapour emerged in the vicinity of the wall when the bed was operated at pseudo-static conditions but disappeared when the bed was run at minimum bubbling conditions. This result shows the capability of optical methods with affordable costs to 2D imaging opaque packed bed by using a spatially resolved probe located at the exit, which is of great benefit for in situ visualization of anisotropic concentrations in packed beds under industrially relevant conditions and thus for elucidation of the underlying reaction mechanism and diffusion interactions. Crown Copyright (c) 2011 Published by Elsevier B.V. All rights reserved.
Resumo:
A new method for catalyst deposition on the inner walls of capillary microreactors is proposed which allows exact control of the coating thickness, pore size of the support, metal particle size, and metal loading. The wall-coated microreactors have been tested in a selective hydrogenation reaction. Activity and selectivity reach values close to those obtained with a homogeneous Pd catalyst. The catalyst activity was stable for a period of 1000 h time-on-stream.