118 resultados para Therapeutic workshops


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Infectious diseases are a leading cause of global human mortality. The use of antimicrobials remains the most common strategy for treatment. However, the isolation of pathogens resistant to virtually all antimicrobials makes it urgent to develop effective therapeutics based on new targets. Here we review a new drug discovery paradigm focusing on identifying and targeting host factors important for infection as well as pathogen determinants involved in disease progression. We summarize innovative strategies which by combining bioinformatics with transcriptomics and chemical genetics have already identified host factors essential for pathogen entry, survival and replication. We describe how the discovery of RNA interference which allows loss-of-function studies has facilitated functional genomic studies in human cells. It is expected that these studies will identify targets to be used as host-directed drug therapy which, together with antimicrobials targeting microbial virulence factors, will efficiently eliminate the invading pathogen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Breast cancer remains a frequent cause of female cancer death despite the great strides in elucidation of biological subtypes and their reported clinical and prognostic significance. We have defined a general cohort of breast cancers in terms of putative actionable targets, involving growth and proliferative factors, the cell cycle, and apoptotic pathways, both as single biomarkers across a general cohort and within intrinsic molecular subtypes.

We identified 293 patients treated with adjuvant chemotherapy. Additional hormonal therapy and trastuzumab was administered depending on hormonal and HER2 status respectively. We performed immunohistochemistry for ER, PR, HER2, MM1, CK5/6, p53, TOP2A, EGFR, IGF1R, PTEN, p-mTOR and e-cadherin. The cohort was classified into luminal (62%) and non-luminal (38%) tumors as well as luminal A (27%), luminal B HER2 negative (22%) and positive (12%), HER2 enriched (14%) and triple negative (25%). Patients with luminal tumors and co-overexpression of TOP2A or IGF1R loss displayed worse overall survival (p=0.0251 and p=0.0008 respectively). Non-luminal tumors had much greater heterogeneous expression profiles with no individual markers of prognostic significance. Non-luminal tumors were characterised by EGFR and TOP2A overexpression, IGF1R, PTEN and p-mTOR negativity and extreme p53 expression.

Our results indicate that only a minority of intrinsic subtype tumors purely express single novel actionable targets. This lack of pure biomarker expression is particular prevalent in the triple negative subgroup and may allude to the mechanism of targeted therapy inaction and myriad disappointing trial results. Utilising a combinatorial biomarker approach may enhance studies of targeted therapies providing additional information during design and patient selection while also helping decipher negative trial results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cathepsin S is a member of the cysteine cathepsin protease family. It is a lysosomal protease which can promote degradation of damaged or unwanted proteins in the endo-lysosomal pathway. Additionally, it has more specific roles such as MHC class II antigen presentation, where it is important in the degradation of the invariant chain. Unsurprisingly, mis-regulation has implicated cathepsin S in a variety of pathological processes including arthritis, cancer, and cardiovascular disease, where it becomes secreted and can act on extracellular substrates. In comparison to many other cysteine cathepsin family members, cathepsin S has uniquely restricted tissue expression and is more stable at a neutral pH, which supports its involvement and importance in localised disease microenvironments. In this review, we examine the known involvement of cathepsin S in disease, particularly with respect to recent work indicating its role in mediating pain, diabetes, and cystic fibrosis. We provide an overview of current literature with regards cathepsin S as a therapeutic target, as well as its role and potential as a predictive diagnostic and/or prognostic marker in these diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is widely accepted that silicon-substituted materials enhance bone formation, yet the mechanism by which this occurs is poorly understood. This work investigates the potential of using diatom frustules to answer on fundamental questions surrounding the role of silica in bone healing. Biosilica with frustules 20m were isolated from Cyclotella meneghiniana a unicellular microalgae that was sourced from the Mississippi River, USA. Silanisation chemistry was used to modify the surface of C. meneghiniana with amine (–NH2) and thiol (–SH) terminated silanes. Untreated frustules and both functionalised groups were soaked in culture medium for 24hrs. Following the culture period, frustules were separated from the conditioned medium by centrifugation and both were tested separately in vitro for cytotoxicity using murine-monocyte macrophage (J774) cell line. Cytotoxicity was measured using LDH release to measure damage to cell membrane, MTS to measure cell viability and live-dead staining. The expression and release of pro-inflammatory cytokines (IL-6 and TNF) were measured using ELISA. Our results found that diatom frustules and those functionalised with amino groups showed no cytotoxicity or elevated cytokine release. Diatom frustules functionalised with thiol groups showed higher levels of cytotoxicity. Diatom frustules and those functionalised with amino groups were taken forward to an in vivo mouse toxicity model, whereby the immunological response, organ toxicity and route of metabolism/excretion of silica were investigated. Histological results showed no organ toxicity in any of the groups relative to control. Analysis of blood Si levels suggests that modified frustules are metabolised quicker than functionalised frustules, suggesting that physiochemical attributes influence their biodistribution. Our results show that diatom frustules are non cytotoxic and are promising materials to better understand the role of silica in bone healing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During cancer development and progression, tumor cells undergo abnormal epigenetic modifications, including DNA methylation, histone deacetylation and nucleosome remodeling. Collectively, these aberrations promote genomic instability and lead to silencing of tumor-suppressor genes and reactivation of oncogenic retroviruses. Epigenetic modifications, therefore, provide exciting new avenues for prostate cancer research. Promoter hypermethylation is widespread during neoplastic transformation of prostate cells, which suggests that restoration of a 'normal' epigenome through treatment with inhibitors of the enzymes involved could be clinically beneficial. Global patterns of histone modifications are also being defined and have been associated with clinical and pathologic predictors of prostate cancer outcome. Although treatment for localized prostate cancer can be curative, the development of successful therapies for the management of castration-resistant metastatic disease is urgently needed. Reactivation of tumor-suppressor genes by demethylating agents and histone deacetylase inhibitors could be a potential treatment option for patients with advanced disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Respiratory Syncytial Virus (RSV) is an important causative agent of lower respiratory tract infections in infants and elderly. Its fusion (F) protein is critical for virus infection. It is targeted by several investigational antivirals and by palivizumab, a humanised monoclonal antibody used prophylactically in infants considered at high risk of severe RSV disease. ALX-0171 is a trimeric Nanobody that binds the antigenic site II of RSV F-protein with subnanomolar affinity. ALX-0171 demonstrated superior in vitro neutralisation compared to palivizumab against prototypic RSV A and B strains. Moreover, ALX-0171 completely blocked replication below limit of detection in 87% of the viruses tested versus 18% for palivizumab at a fixed concentration. Importantly, ALX-0171 was highly effective in reducing both nasal and lung RSV titers when delivered prophylactically or therapeutically directly to the lungs of cotton rats. ALX-0171 represents a potent novel antiviral compound with significant potential to treat RSV-mediated disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is recognition of the need to continuously improve inter-professional relationships within clinical practice. Mutual respect, effective communication and working together are factors which will contribute to higher standards of care (Miers et al, 2005; Begley, 2008). An inter-professional education initiative, using low-fidelity simulation has been piloted and subsequently embedded within a pre-registration midwifery curriculum. The aim of the collaboration is to enhance inter-professional learning by providing an opportunity for final year midwifery students and 4th year medical students within a non-threatening environment to interact and communicate prior to obstetric clinical placements. The midwifery students are provided with an outline agenda for the workshop, but are encouraged to use creative license with regard to workshop delivery. Preliminary evaluations have been positive from both midwifery and medical students. The teaching sessions have provided an opportunity to learn about and respect each other’s roles. The midwifery students have commented on the enjoyable aspects of team working during preparation and the confidence gained from teaching medical students. The medical students felt that the sessions lowered their anxiety levels going into the labour setting. This workshop will demonstrate how low-fidelity simulation can effectively enhance the students experience promoting team working and self-confidence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For over 40 years, the fluoropyrimidine 5-fluorouracil (5-FU) has remained the central agent in therapeutic regimens employed in the treatment of colorectal cancer and is frequently combined with the DNA-damaging agents oxaliplatin and irinotecan, increasing response rates and improving overall survival. However, many patients will derive little or no benefit from treatment, highlighting the need to identify novel therapeutic targets to improve the efficacy of current 5-FU-based chemotherapeutic strategies. dUTP nucleotidohydrolase (dUTPase) catalyzes the hydrolysis of dUTP to dUMP and PPi, providing substrate for thymidylate synthase (TS) and DNA synthesis and repair. Although dUTP is a normal intermediate in DNA synthesis, its accumulation and misincorporation into DNA as uracil is lethal. Importantly, uracil misincorporation represents an important mechanism of cytotoxicity induced by the TS-targeted class of chemotherapeutic agents including 5-FU. A growing body of evidence suggests that dUTPase is an important mediator of response to TS-targeted agents. In this article, we present further evidence showing that elevated expression of dUTPase can protect breast cancer cells from the expansion of the intracellular uracil pool, translating to reduced growth inhibition following treatment with 5-FU. We therefore report the implementation of in silico drug development techniques to identify and develop small-molecule inhibitors of dUTPase. As 5-FU and the oral 5-FU prodrug capecitabine remain central agents in the treatment of a variety of malignancies, the clinical utility of a small-molecule inhibitor to dUTPase represents a viable strategy to improve the clinical efficacy of these mainstay chemotherapeutic agents.