201 resultados para Stone masonry
Resumo:
The Middle Stone Age (MSA) covers the evolution, emergence, and dispersal of Homo sapiens. This article focuses on archaeological data and on published material from key stratified sites with some form of geochronological control from across eastern Africa. The MSA is often characterised by a shift from handaxe production towards discoidal and Levallois techniques. Although evidence for the controlled use of fire remains minimal, it seems likely that MSA hominins used it, as well as being highly skilled in working stone and probably bone and wood. MSA hominins appear to have exploited a range of different ecozones and many MSA sites are focused on ecotones, maximising access to resources. Over time, use of rockshelters and caves also seems to have increased. Although much work remains, the MSA is presently one of the most exciting and dynamic periods in the study of human evolution.
Resumo:
Masonry arch bridges are one of the oldest forms of bridge construction and have been around for thousands of years. Brick and stone arch bridges have proven to be highly durable as most of them have remained serviceable after hundreds of years. In contrast, many bridges built of modern materials have required extensive repair and strengthening after being in service for a relatively short part of their design life. This paper describes the structural monitoring of a novel flexible concrete arch known as: FlexiArchTM. This is a bridge system that can be transported as a flat-pack system to form an arch in-situ by the use of a flexible polymeric membrane. The system has been developed under a Knowledge Transfer Partnership between Queen’s University Belfast (QUB) and Macrete Ltd. Tievenameena Bridge in Northern Ireland was a replacement bridge for the Northern Ireland Roads Service and was monitored under different axle loadings using a range of sensors including discrete fiber optic Bragg gratings to measure the change in strain in the arch ring under live loading. This paper discusses the results of a laboratory model study carried out at QUB. A scaled arch system was loaded with a simulated moving axle. Various techniques were used to monitor the arch under the moving axle load with particular emphasis on the interaction of the arch ring and engineered backfill.
Resumo:
The Natural Stone Database for Northern Ireland was constructed to address the paucity of information available to stone conservation practitioners within the region. Almost 2000 listed buildings and monuments were surveyed over three years to produce an interactive GIS database. This contained information on stone sources, together with details of stone condition and decay processes. This paper uses elements of this GIS to investigate stone decay patterns across Northern Ireland. The results demonstrate that as the level of stone decay increases, so does the proportion of buildings with sandstone as the primary stone type. It appears that a
higher open porosity level combined with Northern Ireland’s wetter climate and maritime location leads to rapid wetting and drying cycles within sandstones. This is coupled with the ingress and crystallisation of marine and other salts within stone pores leading to considerably
higher rates of decay than for any other stone type.
Resumo:
Ancient columns, made with a variety of materials such as marble, granite, stone or masonry are an important part of the
European cultural heritage. In particular columns of ancient temples in Greece and Sicily which support only the architrave are
characterized by small axial load values. This feature together with the slenderness typical of these structural members clearly
highlights as the evaluation of the rocking behaviour is a key aspect of their safety assessment and maintenance. It has to be noted
that the rocking response of rectangular cross-sectional columns modelled as monolithic rigid elements, has been widely investigated
since the first theoretical study carried out by Housner (1963). However, the assumption of monolithic member, although being
widely used and accepted for practical engineering applications, is not valid for more complex systems such as multi-block columns
made of stacked stone blocks, with or without mortar beds. In these cases, in fact, a correct analysis of the system should consider
rocking and sliding phenomena between the individual blocks of the structure. Due to the high non-linearity of the problem, the
evaluation of the dynamic behaviour of multi-block columns has been mostly studied in the literature using a numerical approach
such as the Discrete Element Method (DEM). This paper presents an introductory study about a proposed analytical-numerical
approach for analysing the rocking behaviour of multi-block columns subjected to a sine-pulse type ground motion. Based on the
approach proposed by Spanos (2001) for a system made of two rigid blocks, the Eulero-Lagrange method to obtain the motion
equations of the system is discussed and numerical applications are performed with case studies reported in the literature and with a
real acceleration record. The rocking response of single block and multi-block columns is compared and considerations are made
about the overturning conditions and on the effect of forcing function’s frequency.
.
Evaporative Moisture Loss from Heterogeneous Stone: Material- Environment Interactions During Drying
Resumo:
The complexities of evaporation from structurally and mineralogically heterogeneous sandstone (Locharbriggs Sandstone) are investigated through a laboratory-based experiment in which a variety of environmental conditions are simulated. Data reported demonstrate the significance of material-environment interactions on the spatial and temporal variability of evaporative dynamics. Evaporation from porous stone is determined by the interplay between environmental, material and solution properties, which govern the rate and mode by which water is transmitted to, and subsequently removed from, an evaporating surface. Initially evaporation is marked by high rates of moisture loss controlled by external atmospheric conditions; then, when a critical level of surface moisture content is reached, hydraulic continuity between the stone surface and subsurface is disrupted and the drying front recedes
beneath the surface, evaporation rates decrease and are controlled by the ability of the material to transport water vapour to the surface. Pore size distribution and connectivity, as well as other material properties, control the timing of each stage of evaporation and the nature of the transition.
These experimental data highlight the complexity of evaporation, demonstrating that different regions of the same stone can exhibit varying moisture dynamics during drying and that the rate and nature of evaporative loss differs under different environmental conditions. The results identify the importance of material-environment interactions during drying and that stone micro-environmental conditions cannot be inferred from ambient data alone.
These data have significance for understanding the spatial distribution of stone surface weathering-related morphologies in both the natural and built environments where mineralogical and/or structural heterogeneity creates differences in moisture flux and hence variable drying rates. Such differences may provide a clearer explanation for the initiation and subsequent development of complex weathering responses where areas of significant deterioration can be found alongside areas that exhibit little or no evidence surface breakdown.
Resumo:
Temperature and moisture conditions are key drivers of stone weathering processes in both natural and built environments. Given their importance in the breakdown of stone, a detailed understanding of their temporal and spatial variability is central to understanding present-day weathering behaviour and for predicting how climate change may influence the nature and rates of future stone decay.
Subsurface temperature and moisture data are reported from quarry fresh Peakmoor Sandstone samples exposed during summer (June–July) and late autumn / early winter (October–December) in a mid-latitude, temperate maritime environment. These data demonstrate that the subsurface thermal response of sandstone comprises numerous short-term (minutes), low magnitude fluctuations superimposed upon larger-scale diurnal heating and cooling cycles with distinct aspect-related differences. The short-term fluctuations create conditions in the outer 5–10 mm of stone that are much more ‘energetic’ in comparison to the more subdued thermal cycling that occurs deeper within the sandstone samples.
Data show that moisture dynamics are equally complex with a near-surface region (5–10 mm) in which frequent moisture cycling takes place and this, combined with the thermal dynamism exhibited by the same region may have significant implications for the nature and rate of weathering activity. Data indicate that moisture input from rainfall, particularly when it is wind-driven, can travel deep into the stone where it can prolong the time of wetness. This most often occurs during wetter winter months when moisture input is high and evaporative loss is low but can happen at any time during the year when the hydraulic connection between near-surface and deeper regions of the stone is disrupted with subsequent loss of moisture from depth slowing as it becomes reliant on vapour diffusion alone.
These data illustrate the complexity of temperature and moisture conditions in sandstone exposed to the ‘moderate’ conditions of a temperate maritime environment. They highlight differences in thermal and moisture cycling between near-surface (5–10 mm) and deeper regions within the stone and contribute towards a better understanding of the development of structural and mineralogical heterogeneity between the stone surface and substrate.
Resumo:
Child neglect continues to be the most prevalent form of child maltreatment, yet it has received less specific research attention than other forms of maltreatment (Zuravin, 1999). It is only in recent years that neglect has been seen as a phenomenon that needs to be conceptualised separately to other forms of abuse (Gershater- Molko et al., 2002). Although the term ‘neglect’ is used generally when children do not receive minimal physical and/or emotional care, there is no single agreed definition; one possible reason for this is the lack of consensus about minimally adequate standards of childcare either within professional groups or existing research (Rose and Meezan, 1996; Stone, 1998).
Resumo:
Genetic variation of the alpha-synuclein gene (SNCA) is known to cause familial parkinsonism, however the role of SNCA variants in sporadic Parkinson's disease (PD) remains elusive. The present study identifies an association of common SNCA polymorphisms with disease susceptibility in a series of Irish PD patients. There is evidence for association with alternate regions, of protection and risk which may act independently/synergistically, within the promoter region (Rep1; OR: 0.59, 95% CI: 0.37-0.84) and the 3'UTR of the gene (rs356165; OR: 1.67, 95% CI: 1.08-2.58). Given previous reports of association a collaborative effort is required which may exploit global linkage disequilibrium patterns for SNCA and standardise polymorphic markers used in each population. It is now crucial to identify the susceptibility allele and elucidate its functionality which may generate a therapeutic target for PD.
Resumo:
Sporting with the Classics: The Latin Poetry of William Dillingham (2010) (back cover)
Dana Sutton, University of California:
‘The great merit of Estelle Haan's study is that she is willing to take Dillingham seriously as a poet. Her reproduction of his work, together with an English translation and very detailed studies of his individual poems have the combined effect of rescuing an interesting poet from near-total oblivion. This, in my opinion, is the finest thing a neo-Latin scholar can do, and Haan accomplishes her task with the same skill, sensitivity, and eloquence that have distinguished her studies of other neo-Latin poets of this period (Joseph Addison and Vincent Bourne). It is impossible not to react to this volume with extreme respect and appreciation’.
Gordon Campbell, University of Leicester:
‘Nothing substantial has ever been published on Dillingham, but with this volume we have a new corpus of poetry that intersects with the work of many other seventeenth-century neo-Latin and vernacular poets. Professor Haan’s scholarship is here (as always) placed at the service of the poet, and she leads the reader gently through the work of a new poet. Professor Haan is the most eminent and able neo-Latinist of her generation, and her scholarship never fails; sometimes it dazzles as in the chapters on the hangman's stone and on Renaissance topiary. Her research is always up-to-date, and her translations have a gracefulness that other laborers in the vineyard can only envy’.
Resumo:
Fire has long been recognized as an agent of rock weathering. Our understanding of the impact of fire on stone comes either from early anecdotal evidence, or from more recent laboratory simulation studies, using furnaces to simulate the effects of fire. This paper suggests that knowledge derived from simulated heating experiments is based on the preconceptions of the experiment designer – when using a furnace to simulate fire, the operator decides on the maximum temperature and the duration of the experiment. These are key factors in determining the response of the stone to fire, and if these are removed from realworld observations then knowledge based on these simulations must be questioned. To explore the differences between heating sandstone in a furnace and a real fire, sample blocks of Peakmoor Sandstone were subjected to different stress histories in combination (lime rendering and removal, furnace heating or fire, frost and salt weathering). Block response to furnace heating and fire is discussed, with emphasis placed on the non-uniformity of the fire and of block response to fire in contrast to the uniform response to surface heating in a furnace. Subsequent response to salt weathering (by a 10% solution of sodium chloride and magnesium sulphate) was then monitored by weight loss. Blocks that had experienced fire showed a more unpredictable response to salt weathering than those that had undergone furnace heating – spalling of corners and rapid catastrophic weight loss were evidenced in blocks that had been subjected to fire, after periods of relative quiescence. An important physical side-effect of the fire was soot accumulation, which created a waxy, relatively impermeable layer on some blocks. This layer repelled water and hindered salt ingress, but eventually detached when salt, able to enter the substrate through more permeable areas, concentrated and crystallized behind it, resulting in rapid weight loss and accelerated decay. Copyright ©2007 John Wiley & Sons, Ltd.