170 resultados para Stone carving
Resumo:
A National Frog Survey of Ireland is planned for spring 2011. We conducted a pilot survey of 25 water bodies in ten 0.25 km2 survey squares in Co. Mayo during spring 2010. Drainage ditches were the most commonly available site for breeding and, generally, two 100 m stretches of ditch were surveyed in each square. The restricted period for peak spawning activity renders any methodology utilizing only one site visit inherently risky. Consequently, each site was visited three times from late March to early April. Occurrence of spawn declined significantly from 72 % to 44 % between the first and third visit whilst the overall occurrence of spawn at all sites was 76 %. As the breeding season advanced, spawn either hatched or was predated and, therefore, disappeared. In those water bodies where spawning was late, however, greater densities of spawn were deposited than in those sites where breeding was early. Consequently, spawn density and estimated frog density did not differ significantly between site visits. Future surveys should nevertheless include multiple site visits to avoid biased estimation of species occurrence and distribution. Ecological succession was identified as the main threat present at 44 % of sites.
Resumo:
The rate of species loss is increasing at a global scale, and human-induced extinctions are biased toward predator species. We examined the effects of predator extinctions on a foundation species, the eastern oyster (Crassostrea virginica). We performed a factorial experiment manipulating the presence and abundance of three of the most common predatory crabs, the blue crab (Callinectes sapidus), stone crab (Menippe mercenaria), and mud crab (Panopeus herbstii) in estuaries in the eastern United States. We tested the effects of species richness and identity of predators on juvenile oyster survival, oyster recruitment, and organic matter content of sediment. We also manipulated the density of each of the predators and controlled for the loss of biomass of species by maintaining a constant mass of predators in one set of treatments and simultaneously using an additive design. This design allowed us to test the density dependence of our results and test for functional compensation by other species. The identity of predator species, but not richness, affected oyster populations. The loss of blue crabs, alone or in combination with either of the other species, affected the survival rate of juvenile oysters. Blue crabs and stone crabs both affected oyster recruitment and sediment organic matter negatively. Mud crabs at higher than ambient densities, however, could fulfill some of the functions of blue and stone crabs, suggesting a level of ecological redundancy. Importantly, the strong effects of blue crabs in all processes measured no longer occurred when individuals were present at higher-than-ambient densities. Their role as dominant predator is, therefore, dependent on their density within the system and the density of other species within their guild (e.g., mud crabs). Our findings support the hypothesis that the effects of species loss at higher trophic levels are determined by predator identity and are subject to complex intraguild interactions that are largely density dependent. Understanding the role of biodiversity in ecosystem functioning or addressing practical concerns, such as loss of predators owing to overharvesting, remains complicated because accurate predictions require detailed knowledge of the system and should be drawn from sound experimental evidence, not based on observations or generalized models.
Resumo:
The UK Food Standards Agency convened a workshop on 13 May 2009 to discuss recently completed research on diet and immune function. The objective of the workshop was to review this research and to establish priorities for future research. Several of the trials presented at the workshop showed some effect of nutritional interventions (e.g. vitamin D, Zn, Se) on immune parameters. One trial found that increased fruit and vegetable intake may improve the antibody response to pneumococcal vaccination in older people. The workshop highlighted the need to further clarify the potential public health relevance of observed nutrition-related changes in immune function, e.g. susceptibility to infections and infectious morbidity.
Resumo:
The ability to predict the behavior of masonry materials is crucial to conserve building stone. Natural stone, such as sandstone, is not immune from the processes of weathering in the built environment and suffers from decay by granular disintegration, contour scaling, and multiple flaking. Spatial variation of rock properties is a major contributing factor to inconsistent responses to weathering. This has implications for moisture movement and salt input and output and storage, and results in unpredictability in the decay dynamics of masonry materials. This article explores the use of variography and kriging to investigate the spatial interactions between the trigger factors of stone decay, in particular, permeability and its effect on salt penetration. Sandstone blocks were used to represent fresh building stones from a weathering perspective and gave baseline characteristics for the interpretation of subsequent deterioration and decay pathways. Simulated weathering trials involved preloading a sandstone block with salt and subjecting a separate block to 20 cycles of a weathering trial designed to simulate a temperate weathering regime. Geostatistical analysis indicated differences in the spatial variation of permeability of the fresh rock and that subjected to the weathering regimes. Spatial prediction and visualization showed differences in the spatial continuity of permeability in a horizontal and vertical direction through the preloaded block after salt weathering. Continual wetting with salt and alternate heating increased permeability in a vertical direction, enabling the ingress and movement of salt and moisture more effectively through the stone.
Resumo:
This research characterizes the weathering of natural building stone using an unsteady-state portable probe permeameter. Variations between the permeability properties of fresh rock and the same rocks after the early stages of a salt weathering simulation are used to examine the effects of salt accumulation on spatial variations in surface rock permeability properties in two limestones from Spain. The Fraga and Tudela limestones are from the Ebro basin and are of Miocene age. Both stone types figure largely in the architectural heritage of Spain and, in common with many other building limestones, they are prone to physical damage from salt crystallization in pore spaces. To examine feedbacks associated with salt accumulation during the early stages of this weathering process, samples of the two stone types were subjected to simulated salt weathering under laboratory conditions using magnesium sulphate and sodium chloride at concentrations of 5% and 15%. Permeability mapping and statistical analysis (aspatial statistics and spatial prediction) before and after salt accumulation are used to assess changes in the spatial variability of permeability and to correlate these changes with salt movement, porosity change, potential rock deterioration and textural characteristics. Statistical analyses of small-scale permeability measurements are used to evaluate the drivers for decay and hence aid the prediction of the weathering behaviour of the two limestones.
Resumo:
This paper explores how the surface permeability of sandstone blocks changes over time in response to repeated salt weathering cycles. Surface permeability controls the amount of moisture and dissolved salt that can penetrate in and facilitate decay. Connected pores permit the movement of moisture (and hence soluble salts) into the stone interior, and where areas are more or less permeable soluble salts may migrate along preferred pathways at differential rates. Previous research has shown that salts can accumulate in the near-surface zone and lead to partial pore blocking which influences subsequent moisture ingress and causes rapid salt accumulation in the near-surface zone.
Two parallel salt weathering simulations were carried out on blocks of Peakmoor Sandstone of different volumes. Blocks were removed from simulations after 2, 5, 10, 20 and 60 cycles. Permeability measurements were taken for these blocks at a resolution of 20 mm, providing a grid of 100 permeability values for each surface. The geostatistical technique of ordinary kriging was applied to the data to produce a smoothed interpolation of permeability for these surfaces, and hence improve understanding of the evolution of permeability over time in response to repeated salt weathering cycles.
Results illustrate the different responses of the sandstone blocks of different volumes to repeated salt weathering cycles. In both cases, after an initial subtle decline in the permeability (reflecting pore blocking), the permeability starts to increase — reflected in a rise in mean, maximum and minimum values. However, between 10 and 20 cycles, there is a jump in the mean and range permeability of the group A block surfaces coinciding with the onset of meaningful debris release. After 60 cycles, the range of permeability in the group A block surface had increased markedly, suggesting the development of a secondary permeability. The concept of dynamic instability and divergent behaviour is applied at the scale of a single block surface, with initial small-scale differences across a surface having larger scale consequences as weathering progresses.
After cycle 10, group B blocks show a much smaller increase in mean permeability, and the range stays relatively steady — this may be explained by the capillary conditions set up by the smaller volume of the stone, allowing salts to migrate to the ‘back’ of the blocks and effectively relieving stress at the ‘front’ face.
Resumo:
Following automation of lighthouses around the coastline of Ireland, reports of accelerated deterioration of interior granite stonework have increased significantly with an associated deterioration in the historic structure and rise in related maintenance costs. Decay of granite stone- work primarily occurs through granular disintegration with the effective grusification of granite surfaces. A decay gradient exists within the towers whereby the condition of granite in the lower levels is much worse than elsewhere. The lower tower levels are also regions with highest rela- tive humidity values and greatest salt concentrations. Data indicate that post-automation decay may have been trig- gered by a change in micro-environmental conditions within the towers associated with increased episodes of condensation on stone surfaces. This in turn appears to have facilitated deposition and accumulation of hygro- scopic salts (e.g. NaCl) giving rise to widespread evidence of deliquescence in the lower tower levels. Evidence indicates that the main factors contributing to accelerated deterioration of interior granite stonework are changes in micro-environmental conditions, salt weathering, chemical weathering through the corrosive effect of strongly alkaline conditions on alumino-silicate minerals within the granite and finally, the mica-rich characteristics of the granite itself which increases its structural and chemical susceptibility to subaerial weathering processes by creating points of weakness within the granite. This case study demonstrates how seemingly minor changes in micro-environmental conditions can unintentionally trigger the rapid and extensive deterioration of a previously stable rock type and threaten the long-term future of nationally iconic opera- tional historic structures.
Resumo:
The sediments of Like Fimon N Italy contain the first continuous archive of the Late Pleistocene environmental and climate history of the southern Alpine foreland We present here the detailed palynological record of the interval between Termination II and the List Glacial Maximum The age-depth model is obtained by radiocarbon dating in the uppermost part of the record Downward we con elated major forest expansion and contraction events to isotopic events in the Greenland Ice core records via a stepping-stone approach involving intermediate correlation to isotopic events dated by TIMS U/Th in Alpine and Apennine stalagmites and to pollen records from mime cores of the Iberian margin Modelled ages obtained by Bayesian analysis of deposition are thoroughly consistent with actual ages with maximum offset of +/- 1700 years Sharp expansion of broad-leaved temperate forest and of sudden water table rise mark the onset of the Last Interglacial after a treeless steppe phase at the end of penultimate glaciation This event is actually a two-step process which matches the two step rise observed in the isotopic record of the nearby Antro del Corchia stalagmite respectively dated to 132 5 +/- 2 5 and 129 +/- 1 5 ka At the interglacial decline mixed oak forests were replaced by oceanic mixed forests the latter persisting further for 7 ka till the end of the Eemian succession Warm-temperate woody species are still abundant at the Eemian end corroborating a steep gradient between central Europe and the Alpine divide at the inception of the last glacial After a stadial phase marked by moderate forest decline a new expansion of warm broad leaved forests interrupted by minor events and followed by mixed oceanic forests can be identified with the north-alpine Saint Germain I The spread of beech during the oceanic phase is a valuable circumalpine marker The subsequent stadial-interstadial succession lacking the telocratic oceanic phase is also consistent with the evidence at the north alpine foreland The Middle Wurmian (full glacial) is marked by persistence of mixed forests dominated by conifers but with significant lime and other broad leaved species A major Arboreal Pollen decrease is observed at modelled age of 38 7 +/- 0 5 ka (larch expansion and last occurrence of lime) which his been related to Heinrich Event 4 The evidence of afforestation persisting south of the Alps throughout most of MIS 3 contrasts with a boreal and continental landscape known for the northern alpine foreland pointing to a sharp rainfall boundary at the Alpine divide and to southern air circulation This is in agreement with the Alpine paleoglaciological record and is supported by the pressure and rainfall patterns designed by mesoscale paleoclimate simulations Strenghtening the continental high pressure during the full glacial triggered cyclogenesis in the middle latitude eastern Europe and orographic rainfall in the eastern Alps and the Balkanic mountains thus allowing forests development at current sea level altitudes (C) 2010 Elsevier Ltd All rights reserved