101 resultados para Steam injection.
Resumo:
In the production process of polyethylene terephthalate (PET) bottles, the initial temperature of preforms plays a central role on the final thickness, intensity and other structural properties of the bottles. Also, the difference between inside and outside temperature profiles could make a significant impact on the final product quality. The preforms are preheated by infrared heating oven system which is often an open loop system and relies heavily on trial and error approach to adjust the lamp power settings. In this paper, a radial basis function (RBF) neural network model, optimized by a two-stage selection (TSS) algorithm combined with partial swarm optimization (PSO), is developed to model the nonlinear relations between the lamp power settings and the output temperature profile of PET bottles. Then an improved PSO method for lamp setting adjustment using the above model is presented. Simulation results based on experimental data confirm the effectiveness of the modelling and optimization method.
Resumo:
Highly reactive radicals play an important role in high-temperature gasification processes. However, the effect of radicals on gasification has not been systematically investigated. In the present study, the formation of carbon-radical precursors using atomic radicals such as OH, O, and H and molecules such as H2 and O2 was characterized, and the effect of the precursors on the adsorption step of steam char gasification was studied using quantum chemistry methods. The results revealed that the radicals can be chemisorbed exothermically on char active sites, and the following order of reactivity was observed: O > H2 > H > OH > O 2. Moreover, hydrogen bonds are formed between steam molecules and carbon-radical complexes. Steam molecule adsorption onto carbon-O and carbon-OH complexes is easier than adsorption onto clean carbon surfaces. Alternatively, adsorption on carbon-O2, carbon-H2, and carbon-H complexes is at the same level with that of clean carbon surfaces; thus, OH and O radicals accelerate the physical adsorption of steam onto the char surface, H radical and O2 and H2 molecules do not have a significant effect on adsorption. © 2010 American Chemical Society.
Resumo:
A systematic theoretical study on the adsorption of steam and its thermal decomposition products on carbon both zigzag and armchair surface was performed to provide molecular-level understanding of the reaction activity of all these reactants in biomass steam gasification process. All the calculations were carried out using density functional theory (DFT) at the B3LYP/6-31+g(d,p) level. The structures of carbonaceous surfaces, all reactants and surface complexes were optimized and characterized. Based on the value of adsorption heat been obtained from the calculation, the activity of all reactants can be ordered as: O > O2 >H2 >H >OH >H2O for both zigzag and armchair surface, and the adsorption style is physisorption to water molecule and chemisorption to the other dissociated components.
Resumo:
Objective: To assess the efficacy and safety of periprostatic lignocaine injection in trans-rectal ultrasound (TRUS) -guided biopsy of the prostate gland.
Methods: Ninety- six men (mean age 65 years, range 47-74) undergoing TRUS biopsy were randomised into the local anaesthetic (LA) or placebo group. Six to twelve biopsy cores were taken, the majority being 10 cores. Patients were asked to fill in the expected pain score on a visual analogue scale (VAS) prior to the procedure. They also completed the actual pain experienced on VAS after the biopsy. The incidence of complications was documented.
Results: The age, mean prostate specific antigen (PSA) were comparable in both groups. The expected pain score was also comparable (5.2 +/- 1.6 in LA, 5.0 +/- 1.4 in Placebo). In the LA group, the mean actual pain score was 3.0 +/- 1.8 and in the placebo group it was 6.5 +/- 2.2 (P = 0.0001). When patients were asked whether they would undergo the procedure again in the same way, 100% of the LA group and only 64% of the placebo group responded 'yes'(P=0.002 using Fisher's test). The complication rates were not significantly different between the two groups.
Conclusion: Peri-prostatic injection of local anaesthetic is safe and reduces discomfort significantly, and should be routinely offered to patients.
Resumo:
The injection stretch blow moulding process involves the inflation and stretching of a hot preform into a mould to form bottles. A critical process variable and an essential input for process simulations is the rate of pressure increase within the preform during forming, which is regulated by an air flow restrictor valve. The paper describes a set of experiments for measuring the air flow rate within an industrial ISBM machine and the subsequent modelling of it with the FEA package ABAQUS. Two rigid containers were inserted into a Sidel SBO1 blow moulding machine and subjected to different supply pressures and air flow restrictor settings. The pressure and air temperature were recorded for each experiment enabling the mass flow rate of air to be determined along with an important machine characteristic known as the ‘dead volume’. The experimental setup was simulated within the commercial FEA package ABAQUS/Explicit using a combination of structural, fluid and fluid link elements that idealize the air flowing through an orifice behaving as an ideal gas under isothermal conditions. Results between experiment and simulation are compared and show a good correlation.
Resumo:
Through combined theoretical and experimental efforts, the reaction mechanism of ethanol steam reforming on Rh catalysts was studied. The results suggest that acetaldehyde (CH3CHO) is an important reaction intermediate in the reaction on nanosized Rh catalyst. Our theoretical work suggests that the H-bond effect significantly modifies the ethanol decomposition pathway. The possible reaction pathway on Rh (211) surface is suggested as CH3CH2OH -> CH3CH2O -> CH3CHO -> CH3CO -> CH3 + CO -> CH2 + CO -> CH + CO -> C + CO, followed by the water gas shift reaction to yield H-2 and CO2. In addition, we found that the water-gas shift reaction, not the ethanol decomposition, is the bottleneck for the overall ethanol steam reforming process. The CO + OH association is considered the key step, with a sizable energy barrier of 1.31 eV. The present work first discusses the mechanisms and the water effect in ethanol steam reforming reactions on Rh catalyst from both theoretical and experimental standpoints, which may shed light on designing improved catalysts.
Resumo:
H2 is considered to be a potential alternative fuel due to its high energy density by weight and working with pollution free. Currently, ethanol conversion to hydrogen has drawn much attention because it provides a viable way for H2 production from renewable resources. In this work, we combined theoretical and experimental efforts to study the reaction mechanism of ethanol steam reforming on Rh catalysts. The results suggest that acetaldehyde (CH3CHO) is an important reaction intermediate in the reaction on nano-sized Rh catalyst. Our theoretical work suggests that the H-bond effect significantly modifies the ethanol decomposition pathway. The possible reaction pathway on Rh (211) surface is suggested as: CH3CH2OH → CH3CH2O → CH3CHO → CH3CO → CH3+CO → CH2+CO → CH+CO → C+CO, followed by the water gas shift reaction to yield H2 and CO2. It was found that that the water gas shift reaction is paramount in the ethanol steam reforming process.
Resumo:
A simple circuit that is able to indicate if an injection-locked oscillator is in the locked condition by providing a ‘high’ or ‘low’ output is presented. The detector is compatible with most injection-locked oscillators as all that is required is access to the low-frequency bias circuit, with no direct access needed to the RF/microwave signals. To prove the universal nature of the lock detector it is successfully demonstrated practically for two scenarios: (i) a 1 GHz injection-locked VCO and (ii) a 60 GHz SiGe VCO MMIC.