103 resultados para Slender steel-concrete composite buildings


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hemp-lime concrete is a sustainable alternative to standard building wall materials, with low associated embodied energy. It exhibits good hygric, acoustic and thermal properties, making it an exciting, sustainable building envelope material. When cast in temporary shuttering around a timber frame, it exhibits lower thermal conductivity than concrete, and consequently achieves low U-values in a primarily mono-material wall construction. Although cast relatively thick hemp-lime walls do not generally achieve the low U-values stipulated in building regulations. However assessment of its thermal performance through evaluation of its resistance to thermal transfer alone, underestimates its true thermal quality. The thermal inertia, or reluctance of the wall to change its temperature when exposed to changing environmental temperatures, also has a significant impact on the thermal quality of the wall, the thermal comfort of the interior space and energy consumption due to space heating. With a focus on energy reduction in buildings, regulations emphasise thermal resistance to heat transfer with only less focus on thermal inertia or storage benefits due to thermal mass. This paper investigates dynamic thermal responsiveness in hemp-lime concrete walls. It reports the influence of thermal conductivity, density and specific heat through analysis of steady state and transient heat transfer, in the walls. A novel hot-box design which isolates the conductive heat flow is used, and compared with tests in standard hot-boxes. Thermal diffusivity and effusivity are evaluated, using experimentally measured conductivity, based on analytical relationships. Experimental results evident that hemp-lime exhibits high thermal inertia. They show the thermal inertia characteristics compensate for any limitations in the thermal resistance of the construction material. When viewed together the thermal resistance and mass characteristics of hemp-lime are appropriate to maintain comfortable thermal indoor conditions and low energy operation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As the relative performance of alkali activated slag (AAS) concretes in comparison to Portland cement (PC) counterparts for chloride transport and resulting corrosion of steel bars is not clear, an investigation was carried out and the results are reported in this paper. The effect of alkali concentration and modulus of sodium silicate solution used in AAS was studied. Chloride transport and corrosion properties were assessed with the help of electrical resistivity, non-steady state chloride diffusivity, onset of corrosion, rate of corrosion and pore solution chemistry. It was found that: (i) although chloride content at surface was higher for the AAS concretes, they had lower chloride diffusivity than PC concrete; (ii) pore structure, ionic exchange and interaction effect of hydrates strongly influenced the chloride transport in the AAS concretes; (iii) steel corrosion resistance of the AAS concretes was comparable to that of PC concrete under intermittent chloride ponding regime, with the exception of 6% Na2O and Ms of 1.5; (iv) the corrosion behaviour of the AAS concretes was significantly influenced by ionic exchange, carbonation and sulphide concentration; (v) the increase of alkali concentration of the activator generally increased the resistance of AAS concretes to chloride transport and reduced its resulting corrosion, and a value of 1.5 was found to be an optimum modulus for the activator for improving the chloride transport and the corrosion resistance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of a virtual testing environment, as a cost-effective industrial design tool in the design and analysis of composite structures, requires the need to create models efficiently, as well as accelerate the analysis by reducing the number of degrees of freedom, while still satisfying the need for accurately tracking the evolution of a debond, delamination or crack front. The eventual aim is to simulate both damage initiation and propagation in components with realistic geometrical features, where crack propagation paths are not trivial. Meshless approaches, and the Element-Free Galerkin (EFG) method, are particularly suitable for problems involving changes in topology and have been successfully applied to simulate damage in homogeneous materials and concrete. In this work, the method is utilized to model initiation and mixed-mode propagation of cracks in composite laminates, and to simulate experimentally-observed crack migration which is difficult to model using standard finite element analysis. N

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the results of a full-scale site fire test performed on a cold-formed steel portal frame building with semi-rigid joints. The purpose of the study is to establish a performance-based approach for the design of such structures in fire boundary conditions. In the full-scale site fire test, the building collapsed asymmetrically at a temperature of 714°C. A non-linear elasto-plastic finite-element shell model is described and is validated against the results of the full-scale test. A parametric study is presented that highlights the importance of in-plane restraint from the side rails in preventing an outwards sway failure for both a single portal and full building geometry model. The study also demonstrates that the semi-rigidity of the joints should be taken into account in the design. The single portal and full building geometry models display a close match to site test results with failure at 682°C and 704°C, respectively. A design case is described in accordance with Steel Construction Institute design recommendations. The validated single portal model is tested with pinned bases, columns protected, realistic loading and rafters subject to symmetric uniform heating in accordance with the ISO 834 standard fire curve; failure occurs at 703°C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The studies on chloride induced corrosion of steel bars in alkali activated slag (AAS) concretes are scarcely reported in the past. In order to make this issue clearer and compare the corrosion performance of AAS with Portland cement (PC) counterpart, an investigation was carried out and the results are reported in this paper. Corrosion properties were assessed with the help of rate of corrosion, electrical resistivity and pore solution chemistry. It was found that: (i) steel corrosion resistance of the AAS concretes was comparable or in some cases even worse than that of Portland cement (PC) concrete under intermittent chloride ponding regime; (ii) the corrosion behaviour of the AAS concretes was significantly influenced by ionic exchange, carbonation and sulphide concentration; (iii) the increase of alkali concentration of the activator generally reduced chloride resulting corrosion, and a value of 1.5 was found to be an optimum modulus for the activator for improving the corrosion resistance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper explores the theme of exhibiting architectural research through a particular example, the development of the Irish pavilion for the 14th architectural biennale, Venice 2014. Responding to Rem Koolhaas’s call to investigate the international absorption of modernity, the Irish pavilion became a research project that engaged with the development of the architectures of infrastructure in Ireland in the twentieth and twenty-first centuries. Central to this proposition was that infrastructure is simultaneously a technological and cultural construct, one that for Ireland occupied a critical position in the building of a new, independent post-colonial nation state, after 1921.

Presupposing infrastructure as consisting of both visible and invisible networks, the idea of a matrix become a central conceptual and visual tool in the curatorial and design process for the exhibition and pavilion. To begin with this was a two-dimensional grid used to identify and order what became described as a series of ten ‘infrastructural episodes’. These were determined chronologically across the decades between 1914 and 2014 and their spatial manifestations articulated in terms of scale: micro, meso and macro. At this point ten academics were approached as researchers. Their purpose was twofold, to establish the broader narratives around which the infrastructures developed and to scrutinise relevant archives for compelling visual material. Defining the meso scale as that of the building, the media unearthed was further filtered and edited according to a range of categories – filmic/image, territory, building detail, and model – which sought to communicate the relationship between the pieces of architecture and the larger systems to which they connect. New drawings realised by the design team further iterated these relationships, filling in gaps in the narrative by providing composite, strategic or detailed drawings.

Conceived as an open-ended and extendable matrix, the pavilion was influenced by a series of academic writings, curatorial practices, artworks and other installations including: Frederick Kiesler’s City of Space (1925), Eduardo Persico and Marcello Nizzoli’s Medaglio d’Oro room (1934), Sol Le Witt’s Incomplete Open Cubes (1974) and Rosalind Krauss’s seminal text ‘Grids’ (1979). A modular frame whose structural bays would each hold and present an ‘episode’, the pavilion became both a visual analogue of the unseen networks embodying infrastructural systems and a reflection on the predominance of framed structures within the buildings exhibited. Sharing the aspiration of adaptability of many of these schemes, its white-painted timber components are connected by easily-dismantled steel fixings. These and its modularity allow the structure to be both taken down and re-erected subsequently in different iterations. The pavilion itself is, therefore, imagined as essentially provisional and – as with infrastructure – as having no fixed form. Presenting archives and other material over time, the transparent nature of the space allowed these to overlap visually conveying the nested nature of infrastructural production. Pursuing a means to evoke the qualities of infrastructural space while conveying a historical narrative, the exhibition’s termination in the present is designed to provoke in the visitor, a perceptual extension of the matrix to engage with the future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chloride-induced corrosion of steel in reinforced concrete structures is one of the main problems affecting their durability, but most previous research projects and case studies have focused on concretes without cracks or not subjected to any structural load. Although it has been recognised that structural cracks do influence the chloride transport and chloride induced corrosion in reinforced concrete structures, there is little published work on the influence of micro-cracks due to service loads on these properties. Therefore the effect of micro-cracks caused by loading on chloride transport into concrete was studied. Four different stress levels (0%, 25%, 50% and 75% of the stress at ultimate load – fu) were applied to 100 mm diameter concrete discs and chloride migration was measured using a bespoke test setup based on the NT BUILD 492 test. The effects of replacing Portland cement CEMI by ground granulated blast-furnace slag (GGBS), pulverised fuel ash (PFA) and silica fume (SF) on chloride transport in concrete under sustained loading were studied. The results have indicated that chloride migration coefficients changed little when the stress level was below 50% of the fu; however, it is desirable to keep concrete stress less than 25% fu if this is practical. The effect of removing the load on the change of chloride migration coefficient was also studied. A recovery of around 50% of the increased chloride migration coefficient was found in the case of concretes subjected to 75% of the fu when the load was removed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding the seismic vulnerability of building structures is important for seismic engineers, building owners, risk insurers and governments. Seismic vulnerability defines a buildings predisposition to be damaged as a result of an earthquake of a given severity. There are two components to seismic risk; the seismic hazard and the exposure of the structural inventory to any given earthquake event. This paper demonstrates the development of fragility curves at different damage states using a detailed mechanical model of a moment resisting reinforced concrete structure typical of Southern Europe. The mechanical model consists of a complex three-dimensional finite element model of the reinforced concrete moment resisting frame structure and is used to define the damage states through pushover analysis. Fragility curves are also defined using the HAZUS macroseismic methodology and the Risk-UE macroseismic methodology. Comparison of the mechanically modelled and HAZUS fragility curve shows good agreement while the Risk-UE methodology shows reasonably poor agreement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Web openings could be used in cold-formed steel beam members, such as wall studs or floor joints, to facilitate ease of services in buildings. In this paper, a combination of tests and non-linear finite element analyses is used to investigate the effect of such holes on web crippling under end-one-flange (EOF) loading condition; the cases of both flanges fastened and unfastened to the bearing plates are considered. The results of 74 web crippling tests are presented, with 22 tests conducted on channel sections without web openings and 52 tests conducted on channel sections with web openings. In the case of the tests with web openings, the hole was either located centred above the bearing plates or having a horizontal clear distance to the near edge of the bearing plates. A good agreement between the tests and finite element analyses was obtained in term of both strength and failure modes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The building sector requires the worldwide production of 4 billion tonnes of cement annually, consuming more than 40% of global energy and accounting for about 8% of the total CO2 emissions. The SUS-CON project aimed at integrating waste materials in the production cycle of concrete, for both ready-mixed and pre-cast applications, resulting in an innovative light-weight, ecocompatible and cost-effective construction material, made by all-waste materials and characterized by enhanced thermal insulation performance and low embodied energy and CO2. Alkali activated “cementless” binders, which have recently emerged as eco-friendly construction materials, were used in conjunction with lightweight recycled aggregates to produce sustainable concrete for a range of applications. This paper presents some results from the development of a concrete made with a geopolymeric binder (alkali activated fly ash) and aggregate from recycled mixed plastic. Mix optimisation was achieved through an extensive investigation on production parameters for binder and aggregate. The mix recipe was developed for achieving the required fresh and hardened properties. The optimised mix gave compressive strength of about 7 MPa, flexural strength of about 1.3 MPa and a thermal conductivity of 0.34 W/mK. Fresh and hardened properties were deemed suitable for the industrial production of precast products. Precast panels were designed and produced for the construction of demonstration buildings. Mock-ups of about 2.5 x 2.5 x 2.5 m were built at a demo park in Spain both with SUS-CON and Portland cement concrete, monitoring internal and external temperatures. Field results indicate that the SUS-CON mock-ups have better insulation. During the warmest period of the day, the measured temperature in the SUS-CON mock-ups was lower.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With ever increasing demands to strengthen existing reinforced concrete structures to facilitate higher loading due to change of use and to extend service lifetime, the use of fibre reinforced polymers (FRPs) in structural retrofitting offers an opportunity to achieve these aims. To date, most research in this area has focussed on the use of glass fibre reinforced polymer (GFRP) and carbon fibre reinforced polymer (CFRP), with relatively little on the use of basalt fibre reinforced polymer (BFRP) as a suitable strengthening material. In addition, most previous research has been carried out using simply supported elements, which have not considered the beneficial influence of in-plane lateral restraint, as experienced within a framed building structure. Furthermore, by installing FRPs using the near surface mounted (NSM) technique, disturbance to the existing structure can be minimised.
This paper outlines BFRP NSM strengthening of one third scale laterally restrained floor slabs which reflect the inherent insitu compressive membrane action (CMA) in such slabs. The span-to-depth ratios of the test slabs were 20 and 15 and all were constructed with normal strength concrete (~40N/mm2) and 0.15% steel reinforcement. 0.10% BFRP was used in the retrofitted samples, which were compared with unretrofitted control samples. In addition, the bond strength of BFRP bars bonded into concrete was investigated over a range of bond lengths with two different adhesive thicknesses. This involved using an articulated beam arrangement in order to establish optimum bond characteristics for use in strengthening slab samples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the near future, geopolymers or alkali-activated cementitious materials will be used as new high-performance construction materials of low environmental impact with a reasonable cost. This material is a good candidate to partially replace ordinary portland cement (OPC) in concrete as a major construction material that plays an outstanding role in the construction industry of different structures. Geopolymer materials are inorganic polymers based on alumina and silica units; they are synthesized from a wide range of dehydroxylated alumina-silicate powders condensed with alkaline silicate in a highly alkaline environment. Geopolymeric materials can be produced from a wide range of alumina-silica, including natural products--such as natural pozzolan and metakaolin--or coproducts--such as fly ash (coal and lignite), oil fuel ash, blast furnace or steel slag, and silica fume--and provide a route toward sustainable development. Using lesser amounts of calcium-based raw materials, lower manufacturing temperature, and lower amounts of fuel result in reduced carbon emissions for geopolymer cement manufacture up to 22 to 72% in comparison with portland cement. A study has been done by the authors to investigate the intrinsic nature of different types of Iranian natural pozzolans to determine the activators and methods that could be used to produce a geopolymer concrete based on alkali-activated natural pozzolan (AANP) and optimize mixture design. The mechanical behavior and durability of these types of geopolymer concrete were investigated and compared with normal OPC concrete mixtures cast by the authors and also reported in the literature. This paper summarizes the main conclusions of the research regarding pozzolanic activity, activator properties, engineering and durability properties, applications and evaluation of carbon footprint, and cost for AANP concrete.