216 resultados para Screening batteries
Resumo:
Objective: To compare trends in breast cancer mortality within three pairs of neighbouring European countries in relation to implementation of screening. Design: Retrospective trend analysis.
Setting: Three country pairs (Northern Ireland (United Kingdom) v Republic of Ireland, the Netherlands v Belgium and Flanders (Belgian region south of the Netherlands), and Sweden v Norway).
Data sources: WHO mortality database on cause of death and data sources on mammography screening, cancer treatment, and risk factors for breast cancer mortality.
Main outcome measures: Changes in breast cancer mortality calculated from linear regressions of log transformed, age adjusted death rates. Joinpoint analysis was used to identify the year when trends in mortality for all ages began to change.
Results: From 1989 to 2006, deaths from breast cancer decreased by 29% in Northern Ireland and by 26% in the Republic of Ireland; by 25% in the Netherlands and by 20% in Belgium and 25% in Flanders; and by 16% in Sweden and by 24% in Norway. The time trend and year of downward inflexion were similar between Northern Ireland and the Republic of Ireland and between the Netherlands and Flanders. In Sweden, mortality rates have steadily decreased since 1972, with no downward inflexion until 2006. Countries of each pair had similar healthcare services and prevalence of risk factors for breast cancer mortality but differing implementation of mammography screening, with a gap of about 10-15 years.
Conclusions: The contrast between the time differences in implementation of mammography screening and the similarity in reductions in mortality between the country pairs suggest that screening did not play a direct part in the reductions in breast cancer mortality.
Resumo:
Porous carbon aerogels are prepared by polycondensation of resorcinol (R) and formaldehyde (F)catalyzed by sodium carbonate (C) followed by carbonization of the resultant aerogels at 800? in an inert atmosphere. The porous texture of the carbons has been adjusted by the change of the molar ratio of resorcinol to catalyst (R/C) in the gel precursors in the range of 100 to 500. The porous structure of the aerogels and carbon aerogels are characterized by N2 adsorption-desorption measurements at 77 K. It is found that total pore volume and average pore diameter of the carbons increase with increase in the R/C ratio of the gel precursors.The prepared carbon aerogels are used as active materials in fabrication of composite carbon electrodes. The electrochemical performance of the electrodes has been tested by using them as cathodes in a Li/O2 cell. Through the galvanostatic charge/discharge measurements, it is found that with an increase of R/C ratio, the specific capacity of the Li/O2 cell fabricated from the carbon aerogels increases from 716 to 2077 charge/discharge cycles indicate that the carbon samples possess excellent stability on cycling.
Resumo:
Porous carbon aerogels are prepared by polycondensation of resorcinol and formaldehyde catalyzed by sodium carbonate followed by carbonization of the resultant aerogels in an inert atmosphere. Pore structure of carbon aerogels is adjusted by changing the molar ratio of resorcinol to catalyst during gel preparation and also pyrolysis under Ar and activation under CO2 atmosphere at different temperatures. The prepared carbons are used as active materials in fabrication of composite carbon electrodes. The electrochemical performance of the electrodes has been tested in a Li/O2 cell. Through the galvanostatic charge/discharge measurements, it is found that the cell performance (i.e. discharge capacity and discharge voltage) depends on the morphology of carbon and a combined effect of pore volume, pore size and surface area of carbon affects the storage capacity. A Li/O2 cell using the carbon with the largest pore volume (2.195cm3/g) and a wide pore size (14.23 nm) showed a specific capacity of 1290mAh g-1.
Resumo:
Polymer based carbon aerogels were prepared by synthesis of a resorcinol formaldehyde gel followed by pyrolysis at 1073K under Ar and activation of the resultant carbon under CO2 at different temperatures. The prepared carbon aerogels were used as active materials in the preparation of cathode electrodes for lithium oxygen cells and the electrochemical performance of the cells was evaluated by galvanostatic charge/discharge cycling and electrochemical impedance measurements. It was shown that the storage capacity and discharge voltage of a Li/O2 cell strongly depend on the porous structure of the carbon used in cathode. EIS results also showed that the shape and value of the resistance in the impedance spectrum of a Li/O2 cell are strongly affected by the porosity of carbon used in the cathode. Porosity changes due to the build up of discharge products hinder the oxygen and lithium ion transfer into the electrode, resulting in a gradual increase in the cell impedance with cycling. The discharge capacity and cycle life of the battery decrease significantly as its internal resistance increases with charge/discharge cycling.
Resumo:
A surface plasmon resonance (SPR) optical biosensor method was developed for the detection of paralytic shellfish poisoning (PSP) toxins in shellfish. This application was transferred in the form of a prototype kit to seven laboratories using Biacore QSPR optical biosensor instrumentation for interlaboratory evaluation. Each laboratory received 20 shellfish samples across a range of species including blind duplicates for analysis. The samples consisted of 4 noncontaminated samples spiked in duplicate with a low level of PSP toxins (240 mu g STXcliHCl equivalents/kg), a high level of saxitoxin (825 mu g STXdiHCl/kg), 2 noncontarninated, and 14 naturally contaminated samples. All 7 participating laboratories completed the study, and HorRat values obtained were
Resumo:
In this paper, the results of computational fluid dynamics simulations of flow, temperature, and concentration distributions used in the design of a microreactor for the high-throughput screening of catalytic coatings (Mies et al., Chem. Eng. J. 2004, 101, 225) are compared with experimental data, and good agreement is obtained in all cases. The experimental results on flow distribution were obtained from laser Doppler anemometry measurements in the range of Reynolds numbers from 6 to 113. The measured flow nonuniformity in the separate reactor compartments was below 2%. The temperature distribution was obtained from thermocouple measurements. The temperature nonuniformity between the reactor compartments was below 3 K at a maximum heat production rate of 1.3 W in ethylene oxidation at 425 degrees C over CuO/Al2O3/Al coatings. With respect to concentration gradients, a deviation from the average rate of reaction of only 2.3% was obtained at realistic process conditions in the ethylene ammoxidation process over identical Co-ZSM-5 coatings in all reactor compartments. The cross talking noise between separate compartments does not exceed 0.1% when the reactor parts have a smooth surface finish. This illustrates the importance of ultraprecision machining of surfaces in microtechnology, when interfaces cannot be avoided.