151 resultados para STEROID HYDROCARBON MOLECULES
Resumo:
Chemical species can serve as inputs to supramolecular devices so that a luminescence output is created in a conditional manner. Conditionality is built into these devices by employing the classical photochemical process of photoinduced electron transfer (PET) to compete with luminescence emission. The response of these devices in the analogue regime leads to sensors that can operate in nanometric, micrometric, and millimetric spaces. Some of these devices serve in membrane science, cell physiology, and medical diagnostics. The response in the digital regime leads to Boolean logic gates. Some of these find application in improving aspects of medical diagnostics and in identifying small objects in large populations.
Resumo:
AND logic gate behaviour can be recognized in chemical-responsive luminescence phenomena concerning small molecules. Though initial developments concerned separate and distinguishable chemical species as inputs, consideration of other types of input sets allows substantial expansion of the sub-field. Dissection of these molecular devices into modules, where possible, enables analysis of their logic behaviour according to supramolecular photochemical mechanisms.
Resumo:
The road to molecular logic and computation in Belfast, Northern Ireland started with chemical sensors in Colombo, Sri Lanka. This journey is mapped out with reference to design principles, such as those for luminescent PET (photoinduced electron transfer) sensing. Applications such as those for blood electrolyte diagnostics, "lab-on-a-molecule" systems, and molecular computational identification (MCID) are also met along the way.