175 resultados para SEVERE ASTHMA
Resumo:
Surface plasmon resonance (SPR) based biosensor technology has been widely used in life science research for many applications. While the advantages of speed, ruggedness, versatility, sensitivity and reproducibility are often quoted, many researchers have experienced severe problem of non-specific binding (NSB) to chip surfaces when performing analysis of biological samples Such as bovine serum. Using the direct measurement of the bovine protein leptin, present in bovine serum samples as a model, a unique buffering system has been developed and optimised which was able to significantly reduce the non-specific interactions of bovine serum components with the carboxymethyl dextran chip (CM5) surface on a Biacore SPR The developed NSB buffering system comprised of HBS-EP buffer, containing 0.5 M NaCl, 0.005% CM-dextran pH 9.0. An average NSB reduction (n = 20) of 85.9% and 87.3% was found on an unmodified CM5 surface and a CM5 with bovine leptin immobilised on the chip surface, respectively. A reduction in NSB of up to 94% was observed on both surfaces. The concentration of the constitutive components and pH of the buffer were crucial in achieving this outcome. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2899803/
Resumo:
Introduction: Refractory asthma represents a significant unmet clinical need where the evidence base for the assessment and therapeutic management is limited. The British Thoracic Society (BTS) Difficult Asthma Network has established an online National Registry to standardise specialist UK difficult asthma services and to facilitate research into the assessment and clinical management of difficult asthma.
Methods: Data from 382 well characterised patients, who fulfilled the American Thoracic Society definition for refractory asthma attending four specialist UK centres—Royal Brompton Hospital, London, Glenfield Hospital, Leicester, University Hospital of South Manchester and Belfast City Hospital—were used to compare patient demographics, disease characteristics and healthcare utilisation.
Results: Many demographic variables including gender, ethnicity and smoking prevalence were similar in UK centres and consistent with other published cohorts of refractory asthma. However, multiple demographic factors such as employment, family history, atopy prevalence, lung function, rates of hospital admission/unscheduled healthcare visits and medication usage were different from published data and significantly different between UK centres. General linear modelling with unscheduled healthcare visits, rescue oral steroids and hospital admissions as dependent variables all identified a significant association with clinical centre; different associations were identified when centre was not included as a factor.
Conclusion: Whilst there are similarities in UK patients with refractory asthma consistent with other comparable published cohorts, there are also differences, which may reflect different patient populations. These differences in important population characteristics were also identified within different UK specialist centres. Pooling multicentre data on subjects with refractory asthma may miss important differences and potentially confound attempts to phenotype this population.
Resumo:
Background: Unexplained persistent breathlessness in patients with difficult asthma despite multiple treatments is a common clinical problem. Cardiopulmonary exercise testing (CPX) may help identify the mechanism causing these symptoms, allowing appropriate management.
Methods: This was a retrospective analysis of patients attending a specialist-provided service for difficult asthma who proceeded to CPX as part of our evaluation protocol. Patient demographics, lung function, and use of health care and rescue medication were compared with those in patients with refractory asthma. Medication use 6 months following CPX was compared with treatment during CPX.
Results: Of 302 sequential referrals, 39 patients underwent CPX. A single explanatory feature was identified in 30 patients and two features in nine patients: hyperventilation (n = 14), exercise-induced bronchoconstriction (n = 8), submaximal test (n = 8), normal test (n = 8), ventilatory limitation (n = 7), deconditioning (n = 2), cardiac ischemia (n = 1). Compared with patients with refractory asthma, patients without “pulmonary limitation” on CPX were prescribed similar doses of inhaled corticosteroid (ICS) (median, 1,300 µg [interquartile range (IQR), 800-2,000 µg] vs 1,800 µg [IQR, 1,000-2,000 µg]) and rescue oral steroid courses in the previous year (median, 5 [1-6] vs 5 [1-6]). In this group 6 months post-CPX, ICS doses were reduced (median, 1,300 µg [IQR, 800-2,000 µg] to 800 µg [IQR, 400-1,000 µg]; P < .001) and additional medication treatment was withdrawn (n = 7). Patients with pulmonary limitation had unchanged ICS doses post CPX and additional therapies were introduced.
Conclusions: In difficult asthma, CPX can confirm that persistent exertional breathlessness is due to asthma but can also identify other contributing factors. Patients with nonpulmonary limitation are prescribed inappropriately high doses of steroid therapy, and CPX can identify the primary mechanism of breathlessness, facilitating steroid reduction.
Resumo:
Acute respiratory distress syndrome (ARDS) is a severe form of acute lung injury. It is a response to various diseases of variable etiology, including SARS-CoV infection. To date, a comprehensive study of the genomic physiopathology of ARDS (and SARS) is lacking, primarily due to the difficulty of finding suitable materials to study the disease process at a tissue level (instead of blood, sputa or swaps). Hereby we attempt to provide such study by analyzing autopsy lung samples from patient who died of SARS and showed different degrees of severity of the pulmonary involvement. We performed real-time quantitative PCR analysis of 107 genes with functional roles in inflammation, coagulation, fibrosis and apoptosis: some key genes were confirmed at a protein expression level by immunohistochemistry and correlated to the degree of morphological severity present in the individual samples analyzed. Significant expression levels were identified for ANPEP (a receptor for CoV), as well as inhibition of the STAT1 pathway, IFNs production and CXCL10 (a T-cell recruiter). Other genes unassociated to date with ARDS/SARS include C1Qb, C5R1, CASP3, CASP9, CD14, CD68, FGF7, HLA-DRA, ICF1, IRF3, MALAT-1, MSR1, NFIL3, SLPI, USP33, CLC, GBP1 and TACI. As a result, we proposed to therapeutically target some of these genes with compounds such as ANPEP inhibitors, SLPI and dexamethasone. Ultimately, this study may serve as a model for future, tissue-based analyses of fibroinflammatory conditions affecting the lung. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Aim. This article is a report of recruitment bias in a sample of 5–25-year-old patients with severe cerebral palsy.
Background. The way in which study participants are recruited into research can be a source of bias.
Method. A cross-sectional survey of 5–25-year-old patients with severe cerebral palsy using standardized questionnaires with parents/carers was undertaken in 2007/2008. A case register was used as the sampling frame, and 260 families were approached: 178/260 (68%) responded and 82/260 families never replied (non-respondents). Among responders: 127/178 (71%) opted in to the study, but only 123/127 were assessed, and 82/178 were opted out (or refused). Multivariable logistic regression giving odds ratios was used to study the association between participant characteristics and study outcomes (responders vs. non-responders; opting in vs. opting out; assessed vs. eligible, but not assessed).
Results. Responders (compared with non-responders) were significantly more likely to have a family member with cerebral palsy who was male and resident in more affluent areas. Families who opted in (compared with those opting out and refusing) were more likely to have a family member with cerebral palsy and intellectual impairment and to reside in certain geographical areas. Families who were actually assessed (compared with all eligible, but not assessed) were more likely to have a family member with cerebral palsy and intellectual impairment.
Conclusion. Several sources of bias were identified during recruitment for this study. This has implications for the interpretation and conclusions of surveys of people with disabilities and complex needs.