102 resultados para REGULATORY GUARANTEES
Resumo:
BACKGROUND: Urothelial pathogenesis is a complex process driven by an underlying network of interconnected genes. The identification of novel genomic target regions and gene targets that drive urothelial carcinogenesis is crucial in order to improve our current limited understanding of urothelial cancer (UC) on the molecular level. The inference of genome-wide gene regulatory networks (GRN) from large-scale gene expression data provides a promising approach for a detailed investigation of the underlying network structure associated to urothelial carcinogenesis.
METHODS: In our study we inferred and compared three GRNs by the application of the BC3Net inference algorithm to large-scale transitional cell carcinoma gene expression data sets from Illumina RNAseq (179 samples), Illumina Bead arrays (165 samples) and Affymetrix Oligo microarrays (188 samples). We investigated the structural and functional properties of GRNs for the identification of molecular targets associated to urothelial cancer.
RESULTS: We found that the urothelial cancer (UC) GRNs show a significant enrichment of subnetworks that are associated with known cancer hallmarks including cell cycle, immune response, signaling, differentiation and translation. Interestingly, the most prominent subnetworks of co-located genes were found on chromosome regions 5q31.3 (RNAseq), 8q24.3 (Oligo) and 1q23.3 (Bead), which all represent known genomic regions frequently deregulated or aberated in urothelial cancer and other cancer types. Furthermore, the identified hub genes of the individual GRNs, e.g., HID1/DMC1 (tumor development), RNF17/TDRD4 (cancer antigen) and CYP4A11 (angiogenesis/ metastasis) are known cancer associated markers. The GRNs were highly dataset specific on the interaction level between individual genes, but showed large similarities on the biological function level represented by subnetworks. Remarkably, the RNAseq UC GRN showed twice the proportion of significant functional subnetworks. Based on our analysis of inferential and experimental networks the Bead UC GRN showed the lowest performance compared to the RNAseq and Oligo UC GRNs.
CONCLUSION: To our knowledge, this is the first study investigating genome-scale UC GRNs. RNAseq based gene expression data is the data platform of choice for a GRN inference. Our study offers new avenues for the identification of novel putative diagnostic targets for subsequent studies in bladder tumors.
Resumo:
We describe, for the first time, considerations in the sterile manufacture of polymeric microneedle arrays. Microneedles (MN) made from dissolving polymeric matrices and loaded with the model drugs ovalbumin (OVA) and ibuprofen sodium and hydrogel-forming MN composed of "super-swelling" polymers and their corresponding lyophilised wafer drug reservoirs loaded with OVA and ibuprofen sodium were prepared aseptically or sterilised using commonly employed sterilisation techniques. Moist and dry heat sterilisation, understandably, damaged all devices, leaving aseptic production and gamma sterilisation as the only viable options. No measureable bioburden was detected in any of the prepared devices, and endotoxin levels were always below the US Food & Drug Administration limits (20 endotoxin units/device). Hydrogel-forming MN were unaffected by gamma irradiation (25 kGy) in terms of their physical properties or capabilities in delivering OVA and ibuprofen sodium across excised neonatal porcine skin in vitro. However, OVA content in dissolving MN (down from approximately 101.1 % recovery to approximately 58.3 % recovery) and lyophilised wafer-type drug reservoirs (down from approximately 99.7 % recovery to approximately 60.1 % recovery) was significantly reduced by gamma irradiation, while the skin permeation profile of ibuprofen sodium from gamma-irradiated dissolving MN was markedly different from their non-irradiated counterparts. It is clear that MN poses a very low risk to human health when used appropriately, as evidenced here by low endotoxin levels and absence of microbial contamination. However, if guarantees of absolute sterility of MN products are ultimately required by regulatory authorities, it will be necessary to investigate the effect of lower gamma doses on dissolving MN loaded with active pharmaceutical ingredients and lyophilised wafers loaded with biomolecules in order to avoid the expense and inconvenience of aseptic processing.
Resumo:
We investigate the determinants of US credit union capital-to-assets ratios, before and after the implementation of the current capital adequacy regulatory framework in 2000. Capitalization varies pro-cyclically, and until the financial crisis credit unions classified as adequately capitalized or below followed a faster adjustment path than well capitalized credit unions. This pattern was reversed, however, in the aftermath of the crisis. The introduction of the PCA regulatory regime achieved a reduction in the proportion of credit unions classified as adequately capitalized or below that continued until the onset of the crisis. Since the crisis, the speed of recovery of credit unions in this category following an adverse capitalization shock was sharply reduced.
Resumo:
Transport accounts for 22% of greenhouse gas emissions in the United Kingdom and cars are expected tomore than double by 2050. Car manufacturers are continually aiming for a substantially reduced carbonfootprint through improved fuel efficiency and better powertrain performance due to the strict EuropeanUnion emissions standards. However, road tax, not just fuel efficiency, is a key consideration of consumerswhen purchasing a car. While measures have been taken to reduce emissions through stricter standards, infuture, alternative technologies will be used. Electric vehicles, hybrid vehicles and range extended electricvehicles have been identified as some of these future technologies. In this research a virtual test bed of aconventional internal combustion engine and a range extended electric vehicle family saloon car were builtin AVL’s vehicle and powertrain system level simulation tool, CRUISE, to simulate the New EuropeanDrive Cycle and the results were then soft-linked to a techno-economic model to compare the effectivenessof current support mechanisms over the full life cycle of both cars. The key finding indicates that althoughcarbon emissions are substantially reduced, switching is still not financially the best option for either theconsumer or the government in the long run.
Resumo:
In recent years much attention has been given to systemic risk and maintaining financial stability. Much of the focus, rightly, has been on market failures and the role of regulation in addressing them. This article looks at the role of domestic policies and government actions as sources of global instability. The global financial system is built upon global markets controlled by national financial and macroeconomic policies. In this context, regulatory asymmetries, diverging policy preferences, and government failures add a further dimension to global systemic risk not present at the national level.
Systemic risk is a result of the interplay between two independent variables: an underlying trigger event, in this analysis a domestic policy measure, and a transmission channel. The solution to systemic risk requires tackling one of these variables. In a domestic setting, the centralization of regulatory power into one single authority makes it easier to balance the delicate equilibrium between enhancing efficiency and reducing instability. However, in a global financial system in which national financial policies serve to maximize economic welfare, regulators will be confronted with difficult policy and legal tradeoffs.
We investigate the role that financial regulation plays in addressing domestic policy failures and in controlling the danger of global financial interdependence. To do so we analyse global financial interconnectedness, and explain its role in transmitting instability; we investigate the political economy dynamics at the origin of regulatory asymmetries and government failures; and we discuss the limits of regulation.
Resumo:
Capital controls and exchange restrictions are used to restrict international capital flows during economic crises. This paper looks at the legal implications of these restrictions and explores the current international regulatory framework applicable to international capital movements and current payments. It shows how international capital flows suffer from the lack of a comprehensive and coherent regulatory framework that would harmonize the patchwork of
multilateral, regional, and bilateral treaties that currently regulate this issue. These treaties include the Articles of Agreement of the International Monetary Fund (IMF Articles), the General Agreement on Trade in Services (GATS), free-trade agreements, the European Union treaty, bilateral investment treaties, and the Organization for Economic Co-operation and Development (OECD) Code of Liberalization of Capital Movements (OECD Code of Capital Movement). Each
of these instruments regulate differently capital movements with little coordination with other areas of law. This situation sometimes leads to regulatory overlaps and conflict between different sources of law. Given the strong links between capital movements and trade in services, this paper pays particular attention to the rules of the GATS on capital flows and discusses the policy space available in the GATS for restricting capital flows in times of crisis.
Resumo:
Molecular characterization of genome-wide association study (GWAS) loci can uncover key genes and biological mechanisms underpinning complex traits and diseases. Here we present deep, high-throughput characterization of gene regulatory mechanisms underlying prostate cancer risk loci. Our methodology integrates data from 295 prostate cancer chromatin immunoprecipitation and sequencing experiments with genotype and gene expression data from 602 prostate tumor samples. The analysis identifies new gene regulatory mechanisms affected by risk locus SNPs, including widespread disruption of ternary androgen receptor (AR)-FOXA1 and AR-HOXB13 complexes and competitive binding mechanisms. We identify 57 expression quantitative trait loci at 35 risk loci, which we validate through analysis of allele-specific expression. We further validate predicted regulatory SNPs and target genes in prostate cancer cell line models. Finally, our integrated analysis can be accessed through an interactive visualization tool. This analysis elucidates how genome sequence variation affects disease predisposition via gene regulatory mechanisms and identifies relevant genes for downstream biomarker and drug development.