109 resultados para Quadratic Integer Programming
Resumo:
This work presents novel algorithms for learning Bayesian networks of bounded treewidth. Both exact and approximate methods are developed. The exact method combines mixed integer linear programming formulations for structure learning and treewidth computation. The approximate method consists in sampling k-trees (maximal graphs of treewidth k), and subsequently selecting, exactly or approximately, the best structure whose moral graph is a subgraph of that k-tree. The approaches are empirically compared to each other and to state-of-the-art methods on a collection of public data sets with up to 100 variables.
Resumo:
Credal nets are probabilistic graphical models which extend Bayesian nets to cope with sets of distributions. An algorithm for approximate credal network updating is presented. The problem in its general formulation is a multilinear optimization task, which can be linearized by an appropriate rule for fixing all the local models apart from those of a single variable. This simple idea can be iterated and quickly leads to accurate inferences. A transformation is also derived to reduce decision making in credal networks based on the maximality criterion to updating. The decision task is proved to have the same complexity of standard inference, being NPPP-complete for general credal nets and NP-complete for polytrees. Similar results are derived for the E-admissibility criterion. Numerical experiments confirm a good performance of the method.
Resumo:
A credal network is a graphical tool for representation and manipulation of uncertainty, where probability values may be imprecise or indeterminate. A credal network associates a directed acyclic graph with a collection of sets of probability measures; in this context, inference is the computation of tight lower and upper bounds for conditional probabilities. In this paper we present new algorithms for inference in credal networks based on multilinear programming techniques. Experiments indicate that these new algorithms have better performance than existing ones, in the sense that they can produce more accurate results in larger networks.
Resumo:
Introduction
The use of video capture of lectures in Higher Education is not a recent occurrence with web based learning technologies including digital recording of live lectures becoming increasing commonly offered by universities throughout the world (Holliman and Scanlon, 2004). However in the past decade the increase in technical infrastructural provision including the availability of high speed broadband has increased the potential and use of videoed lecture capture. This had led to a variety of lecture capture formats including pod casting, live streaming or delayed broadcasting of whole or part of lectures.
Additionally in the past five years there has been a significant increase in the popularity of online learning, specifically via Massive Open Online Courses (MOOCs) (Vardi, 2014). One of the key aspects of MOOCs is the simulated recording of lecture like activities. There has been and continues to be much debate on the consequences of the popularity of MOOCs, especially in relation to its potential uses within established University programmes.
There have been a number of studies dedicated to the effects of videoing lectures.
The clustered areas of research in video lecture capture have the following main themes:
• Staff perceptions including attendance, performance of students and staff workload
• Reinforcement versus replacement of lectures
• Improved flexibility of learning
• Facilitating engaging and effective learning experiences
• Student usage, perception and satisfaction
• Facilitating students learning at their own pace
Most of the body of the research has concentrated on student and faculty perceptions, including academic achievement, student attendance and engagement (Johnston et al, 2012).
Generally the research has been positive in review of the benefits of lecture capture for both students and faculty. This perception coupled with technical infrastructure improvements and student demand may well mean that the use of video lecture capture will continue to increase in frequency in the next number of years in tertiary education. However there is a relatively limited amount of research in the effects of lecture capture specifically in the area of computer programming with Watkins 2007 being one of few studies . Video delivery of programming solutions is particularly useful for enabling a lecturer to illustrate the complex decision making processes and iterative nature of the actual code development process (Watkins et al 2007). As such research in this area would appear to be particularly appropriate to help inform debate and future decisions made by policy makers.
Research questions and objectives
The purpose of the research was to investigate how a series of lecture captures (in which the audio of lectures and video of on-screen projected content were recorded) impacted on the delivery and learning of a programme of study in an MSc Software Development course in Queen’s University, Belfast, Northern Ireland. The MSc is conversion programme, intended to take graduates from non-computing primary degrees and upskill them in this area. The research specifically targeted the Java programming module within the course. It also analyses and reports on the empirical data from attendances and various video viewing statistics. In addition, qualitative data was collected from staff and student feedback to help contextualise the quantitative results.
Methodology, Methods and Research Instruments Used
The study was conducted with a cohort of 85 post graduate students taking a compulsory module in Java programming in the first semester of a one year MSc in Software Development. A pre-course survey of students found that 58% preferred to have available videos of “key moments” of lectures rather than whole lectures. A large scale study carried out by Guo concluded that “shorter videos are much more engaging” (Guo 2013). Of concern was the potential for low audience retention for videos of whole lectures.
The lecturers recorded snippets of the lecture directly before or after the actual physical delivery of the lecture, in a quiet environment and then upload the video directly to a closed YouTube channel. These snippets generally concentrated on significant parts of the theory followed by theory related coding demonstration activities and were faithful in replication of the face to face lecture. Generally each lecture was supported by two to three videos of durations ranging from 20 – 30 minutes.
Attendance
The MSc programme has several attendance based modules of which Java Programming was one element. In order to assess the consequence on attendance for the Programming module a control was established. The control used was a Database module which is taken by the same students and runs in the same semester.
Access engagement
The videos were hosted on a closed YouTube channel made available only to the students in the class. The channel had enabled analytics which reported on the following areas for all and for each individual video; views (hits), audience retention, viewing devices / operating systems used and minutes watched.
Student attitudes
Three surveys were taken in regard to investigating student attitudes towards the videoing of lectures. The first was before the start of the programming module, then at the mid-point and subsequently after the programme was complete.
The questions in the first survey were targeted at eliciting student attitudes towards lecture capture before they had experienced it in the programme. The midpoint survey gathered data in relation to how the students were individually using the system up to that point. This included feedback on how many videos an individual had watched, viewing duration, primary reasons for watching and the result on attendance, in addition to probing for comments or suggestions. The final survey on course completion contained questions similar to the midpoint survey but in summative view of the whole video programme.
Conclusions and Outcomes
The study confirmed findings of other such investigations illustrating that there is little or no effect on attendance at lectures. The use of the videos appears to help promote continual learning but they are particularly accessed by students at assessment periods. Students respond positively to the ability to access lectures digitally, as a means of reinforcing learning experiences rather than replacing them. Feedback from students was overwhelmingly positive indicating that the videos benefited their learning. Also there are significant benefits to part recording of lectures rather than recording whole lectures. The behaviour viewing trends analytics suggest that despite the increase in the popularity of online learning via MOOCs and the promotion of video learning on mobile devices in fact in this study the vast majority of students accessed the online videos at home on laptops or desktops However, in part, this is likely due to the nature of the taught subject, that being programming.
The research involved prerecording the lecture in smaller timed units and then uploading for distribution to counteract existing quality issues with recording entire live lectures. However the advancement and consequential improvement in quality of in situ lecture capture equipment may well help negate the need to record elsewhere. The research has also highlighted an area of potentially very significant use for performance analysis and improvement that could have major implications for the quality of teaching. A study of the analytics of the viewings of the videos could well provide a quick response formative feedback mechanism for the lecturer. If a videoed lecture either recorded live or later is a true reflection of the face to face lecture an analysis of the viewing patterns for the video may well reveal trends that correspond with the live delivery.
Resumo:
This paper is concerned with the analysis of the stability of delayed recurrent neural networks. In contrast to the widely used Lyapunov–Krasovskii functional approach, a new method is developed within the integral quadratic constraints framework. To achieve this, several lemmas are first given to propose integral quadratic separators to characterize the original delayed neural network. With these, the network is then reformulated as a special form of feedback-interconnected system by choosing proper integral quadratic constraints. Finally, new stability criteria are established based on the proposed approach. Numerical examples are given to illustrate the effectiveness of the new approach.
Resumo:
There is a perception amongst some of those learning computer programming that the principles of object-oriented programming (where behaviour is often encapsulated across multiple class files) can be difficult to grasp, especially when taught through a traditional, didactic ‘talk-and-chalk’ method or in a lecture-based environment.
We propose a non-traditional teaching method, developed for a government funded teaching training project delivered by Queen’s University, we call it bigCode. In this scenario, learners are provided with many printed, poster-sized fragments of code (in this case either Java or C#). The learners sit on the floor in groups and assemble these fragments into the many classes which make-up an object-oriented program.
Early trials indicate that bigCode is an effective method for teaching object-orientation. The requirement to physically organise the code fragments imitates closely the thought processes of a good software developer when developing object-oriented code.
Furthermore, in addition to teaching the principles involved in object-orientation, bigCode is also an extremely useful technique for teaching learners the organisation and structure of individual classes in Java or C# (as well as the organisation of procedural code). The mechanics of organising fragments of code into complete, correct computer programs give the users first-hand practice of this important skill, and as a result they subsequently find it much easier to develop well-structured code on a computer.
Yet, open questions remain. Is bigCode successful only because we have unknowingly predominantly targeted kinesthetic learners? Is bigCode also an effective teaching approach for other forms of learners, such as visual learners? How scalable is bigCode: in its current form can it be used with large class sizes, or outside the classroom?
Resumo:
Boolean games are a framework for reasoning about the rational behaviour of agents, whose goals are formalized using propositional formulas. They offer an attractive alternative to normal-form games, because they allow for a more intuitive and more compact encoding. Unfortunately, however, there is currently no general, tailor-made method available to compute the equilibria of Boolean games. In this paper, we introduce a method for finding the pure Nash equilibria based on disjunctive answer set programming. Our method is furthermore capable of finding the core elements and the Pareto optimal equilibria, and can easily be modified to support other forms of optimality, thanks to the declarative nature of disjunctive answer set programming. Experimental results clearly demonstrate the effectiveness of the proposed method.
Resumo:
Possibilistic answer set programming (PASP) extends answer set programming (ASP) by attaching to each rule a degree of certainty. While such an extension is important from an application point of view, existing semantics are not well-motivated, and do not always yield intuitive results. To develop a more suitable semantics, we first introduce a characterization of answer sets of classical ASP programs in terms of possibilistic logic where an ASP program specifies a set of constraints on possibility distributions. This characterization is then naturally generalized to define answer sets of PASP programs. We furthermore provide a syntactic counterpart, leading to a possibilistic generalization of the well-known Gelfond-Lifschitz reduct, and we show how our framework can readily be implemented using standard ASP solvers.
Resumo:
Fuzzy answer set programming (FASP) is a generalization of answer set programming to continuous domains. As it can not readily take uncertainty into account, however, FASP is not suitable as a basis for approximate reasoning and cannot easily be used to derive conclusions from imprecise information. To cope with this, we propose an extension of FASP based on possibility theory. The resulting framework allows us to reason about uncertain information in continuous domains, and thus also about information that is imprecise or vague. We propose a syntactic procedure, based on an immediate consequence operator, and provide a characterization in terms of minimal models, which allows us to straightforwardly implement our framework using existing FASP solvers.