108 resultados para Pulmonary Edema
Resumo:
Rationale:
Cathepsin S (CTSS) activity is increased in bronchoalveolar lavage (BAL) fluid from patients with cystic fibrosis (CF). This activity contributes to lung inflammation via degradation of antimicrobial proteins, such as lactoferrin and members of the β-defensin family.
Objectives:
In this study, we investigated the hypothesis that airway epithelial cells are a source of CTSS, and mechanisms underlying CTSS expression in the CF lung.
Methods:
Protease activity was determined using fluorogenic activity assays. Protein and mRNA expression were analyzed by ELISA, Western blotting, and reverse-transcriptase polymerase chain reaction.Measurements and Main Results: In contrast to neutrophil elastase, CTSS activity was detectable in 100% of CF BAL fluid samples from patients without Pseudomonas aeruginosa infection. In this study, we identified epithelial cells as a source of pulmonary CTSS activity with the demonstration that CF airway epithelial cells express and secrete significantly more CTSS than non-CF control cells in the absence of proinflammatory stimulation. Furthermore, levels of the transcription factor IRF-1 correlated with increased levels of its target gene CTSS. We discovered that miR-31, which is decreased in the CF airways, regulates IRF-1 in CF epithelial cells. Treating CF bronchial epithelial cells with a miR-31 mimic decreased IRF-1 protein levels with concomitant knockdown of CTSS expression and secretion.
Conclusions:
The miR-31/IRF-1/CTSS pathway may play a functional role in the pathogenesis of CF lung disease and may open up new avenues for exploration in the search for an effective therapeutic target.
Resumo:
The novel long-acting β2-agonist olodaterol demonstrated an acceptable safety profile in short-term phase II clinical studies. This analysis of four randomized, double-blind, placebo-controlled, parallel-group, phase III studies (1222.11, NCT00782210; 1222.12, NCT00782509; 1222.13, NCT00793624; 1222.14, NCT00796653) evaluated the long-term safety of olodaterol once daily (QD) in a large cohort of patients with moderate to very severe (Global initiative for chronic Obstructive Lung Disease 2-4) chronic obstructive pulmonary disease (COPD). The studies compared olodaterol (5 or 10 μg) QD via Respimat®, formoterol 12 μg twice daily (BID) via Aerolizer® (1222.13 and 1222.14), and placebo for 48 weeks. Patients continued receiving background maintenance therapy, with ∼60% receiving concomitant cardiovascular therapy and 25% having a history of concomitant cardiac disease. Pre-specified analyses of pooled data assessed the adverse events (AEs) and serious AEs in the whole population, and in subgroups with cardiac disease, along with in-depth electrocardiogram and Holter monitoring. In total, 3104 patients were included in the safety analysis: 876 received olodaterol 5 μg, 883 received olodaterol 10 μg, 885 received placebos, and 460 received formoterol 12 μg BID. Overall incidence of on-treatment AEs (71.2%), serious AEs (16.1%), and deaths (1.7%) were balanced across treatment groups. Respiratory and cardiovascular AEs, including major adverse cardiac events, were reported at similar frequencies in placebo and active treatment groups. The safety profiles of both olodaterol 5 μg (marketed and registered dose) and 10 μg QD delivered via Respimat® are comparable to placebo and formoterol BID in this population, with no safety signals identified.
Resumo:
Background: Comparative effectiveness research (CER) is intended to inform decision making in clinical practice, and is central to patientcentered outcomes research (PCOR). Purpose: To summarize key aspects of CER definitions and provide examples highlighting the complementary nature of efficacy and CER studies in pulmonary, critical care, and sleep medicine. Methods: An ad hoc working group of the American Thoracic Society with experience in clinical trials, health services research, quality improvement, and behavioral sciences in pulmonary, critical care, and sleepmedicinewas convened. The group used an iterative consensus process, including a reviewbyAmerican Thoracic Society committees and assemblies. Results: The traditional efficacy paradigm relies on clinical trials with high internal validity to evaluate interventions in narrowly defined populations and in research settings. Efficacy studies address the question, "Can it work in optimal conditions?" The CER paradigm employs a wide range of study designs to understand the effects of interventions in clinical settings. CER studies address the question, "Does it work in practice?" The results of efficacy and CER studies may or may not agree. CER incorporates many attributes of outcomes research and health services research, while placing greater emphasis on meeting the expressed needs of nonresearcher stakeholders (e.g., patients, clinicians, and others). Conclusions: CER complements traditional efficacy research by placing greater emphasis on the effects of interventions in practice, and developing evidence to address the needs of the many stakeholders involved in health care decisions. Stakeholder engagement is an important component of CER. Copyright © 2013 by the American Thoracic Society.
Resumo:
Pulmonary exacerbations are important clinical events for cystic fibrosis (CF) patients. Studies assessing the ability of the lung clearance index (LCI) to detect treatment response for pulmonary exacerbations have yielded heterogeneous results. Here, we conduct a retrospective analysis of pooled LCI data to assess treatment with intravenous antibiotics for pulmonary exacerbations and to understand factors explaining the heterogeneous response.
A systematic literature search was performed to identify prospective observational studies. Factors predicting the relative change in LCI and spirometry were evaluated while adjusting for within-study clustering.
Six previously reported studies and one unpublished study, which included 176 pulmonary exacerbations in both paediatric and adult patients, were included. Overall, LCI significantly decreased by 0.40 units (95% CI -0.60 -0.19, p=0.004) or 2.5% following treatment. The relative change in LCI was significantly correlated with the relative change in forced expiratory volume in 1 s (FEV1), but results were discordant in 42.5% of subjects (80 out of 188). Higher (worse) baseline LCI was associated with a greater improvement in LCI (slope: -0.9%, 95% CI -1.0- -0.4%).
LCI response to therapy for pulmonary exacerbations is heterogeneous in CF patients; the overall effect size is small and results are often discordant with FEV1.
Resumo:
Topic: A systematic review and meta-analysis of dyslipidemia and diabetic macular edema (DME).
Clinical Relevance: Diabetic macular edema causes impairment of vision in patients with diabetes, and dyslipidemia has been reported as a risk factor for its development. A systematic review with a meta-analysis was undertaken to examine the evidence of an association between dyslipidemia and DME.
Methods: We defined eligibility criteria as randomized controlled trials (RCTs) and cohort, case-control, and cross-sectional studies reporting on the relationship between blood lipid levels and DME. We performed a literature search in MEDLINE, PubMed, and Embase from inception to September 2014. We used the NewcastleeOttawa scale to assess the quality of case-control, cross-sectional, and cohort studies, and the Cochrane risk of bias tool for RCTs.
Results: The search strategy identified 4959 publications. After screening, we selected 21 articles for review (5 cross-sectional, 5 cohort, 7 case-control, and 4 RCTs). Meta-analysis of case-control studies revealed that mean levels of total serum cholesterol (TC), low-density lipoproteins (LDLs), and serum triglycerides (TGs) were significantly higher in patients with DME compared with those without DME (TC: 30.08; 95% confidence interval [CI], 21.14e39.02; P < 0.001; LDL: 18.62; 95% CI, 5.80e31.43; P < 0.05; TG: 24.82; 95% CI, 9.21e40.42; P < 0.05). Meta-analysis of RCTs did not show significant risk in worsening of hard exudates and severity of DME in the lipid-lowering group compared with placebo (hard exudates: relative risk, 1.00; 95% CI, 0.47e2.11; P ¼ 1.00; DME: relative risk, 1.18; 95% CI, 0.75e1.86; P ¼ 0.48).
Conclusions: Despite evidence from the cohort studies and meta-analysis of the case-control studies suggesting a strong relationship between lipid levels and DME, this was not confirmed by the meta-analysis that included only prospective RCTs. Therefore, given the significant public health relevance of the topic, the relationship between lipid levels and DME deserves further investigation.
Resumo:
Neutrophil elastase (NE), a biomarker of infection and inflammation, correlates with the severity of several respiratory diseases including chronic obstructive pulmonary disease (COPD). However, it’s detection and quantification in biological samples is confounded by a lack of reliable and robust methodologies. Standard assays using chromogenic or fluorogenic substrates are not specific when added to complex clinical samples containing multiple proteolytic and hydrolytic enzymes which have the ability to hydrolyse the substrate, thereby resulting in an over-estimation of the target protease. Furthermore, ELISA systems measure total protease levels which can be a mixture of latent, active and protease-inhibitor complexes. Therefore, we have developed a novel immunoassay (ProteaseTag™ Active NE Immunoassay) which is selective and specific for the capture of active NE in sputum and Bronchoalveolar Lavage (BAL) in patients with COPD. The objective of this study was to clinically validate ProteaseTag™ Active NE Ultra Immunoassay for the detection of NE in sputum from COPD patients. 20 matched sputum sol samples were collected from 10 COPD patients (M=6, F=4; 73 ± 6 years) during stable and exacerbation phases. Samples were assayed for NE activity utilising both ProteaseTag™ Active NE Ultra Immunoassay and a fluorogenic substrate-based kinetic activity assay. Both assays detected elevated levels of NE in the majority of patients (n=7) during an exacerbation (mean=217.2 μg/ml ±296.6) compared to their stable phase (mean=92.37 μg/ml ±259.8). However, statistical analysis did not show this difference to be significant (p=0.07, ProteaseTag™ Active NE Ultra Immunoassay; p=0.06 kinetic assay), most likely due to the low study number. A highly significant correlation was found between the 2 assay types (p≤0.0001, r=0.996). NE as a primary efficacy endpoint in clinical trials or as a marker of inflammation within the clinic has been hampered by the lack of a robust and simple to use assay. ProteaseTag™ Active NE Immunoassay specifically measures only active NE in clinical samples, is quick and easy to use (< 3 hours) and has no dependency on a kinetic readout. ProteaseTag™ technology is currently being transferred to a lateral flow device for use at Point of Care.
Resumo:
PURPOSE: Recent studies report that increased corneal edema because of contact lens wear under closed lids is associated with elevated Goldmann intraocular pressure (GAT IOP). We sought to assess whether the impact of postoperative corneal edema on GAT IOP would be similar and to determine the differential effect of different amounts of edema. METHODS: The setting is a tertiary level cataract clinic in Shantou, China. Pre- and postoperative (day 1) GAT IOP, central corneal thickness (CCT), corneal hysteresis, corneal resistance factor, and radius of corneal curvature were measured for consecutive patients undergoing phacoemulsification surgery by 2 experienced surgeons. Corneal edema was calculated as the percentage increase in CCT. RESULTS: Among 136 subjects (mean age, 62.5 ± 15.4 years; 53.7% women), the mean increase in CCT was 10.3% postoperatively. Greater corneal edema was associated with lower GAT IOP in unadjusted analyses (P < 0.03) and in linear regression models (P < 0.01). In the model, higher corneal resistance factor (P < 0.001), lower corneal hysteresis (P < 0.001), and steeper radius of corneal curvature (P < 0.001) were associated with higher GAT IOP. Among subjects with edema < the median, edema was associated with lower GAT IOP (P = 0.004), whereas among those with edema ≥ the median, edema was not associated with GAT IOP. An increase in CCT of 7% was associated with an 8 mm Hg underestimation of GAT IOP in our models. CONCLUSIONS: The effect of postoperative edema on GAT IOP seems to be the opposite of contact lens-induced edema. The magnitude of the effect is potentially relevant to patient management.
Resumo:
RATIONALE: The role bacteria play in the progression of COPD has increasingly been highlighted in recent years. However, the microbial community complexity in the lower airways of patients with COPD is poorly characterised.
OBJECTIVES: To compare the lower airway microbiota in patients with COPD, smokers and non-smokers.
METHODS: Bronchial wash samples from adults with COPD (n=18), smokers with no airways disease (n=8) and healthy individuals (n=11) were analysed by extended-culture and culture-independent Illumina MiSeq sequencing. We determined aerobic and anaerobic microbiota load and evaluated differences in bacteria associated with the three cohorts. Culture-independent analysis was used to determine differences in microbiota between comparison groups including taxonomic richness, diversity, relative abundance, 'core' microbiota and co-occurrence.
MEASUREMENT AND MAIN RESULTS: Extended-culture showed no difference in total load of aerobic and anaerobic bacteria between the three cohorts. Culture-independent analysis revealed that the prevalence of members of Pseudomonas spp. was greater in the lower airways of patients with COPD; however, the majority of the sequence reads for this taxa were attributed to three patients. Furthermore, members of Bacteroidetes, such as Prevotella spp., were observed to be greater in the 'healthy' comparison groups. Community diversity (α and β) was significantly less in COPD compared with healthy groups. Co-occurrence of bacterial taxa and the observation of a putative 'core' community within the lower airways were also observed.
CONCLUSIONS: Microbial community composition in the lower airways of patients with COPD is significantly different to that found in smokers and non-smokers, indicating that a component of the disease is associated with changes in microbiological status.
Resumo:
Background Lumacaftor/ivacaftor combination therapy demonstrated clinical benefits inpatients with cystic fibrosis homozygous for the Phe508del CFTR mutation.Pretreatment lung function is a confounding factor that potentially impacts the efficacyand safety of lumacaftor/ivacaftor therapy. Methods Two multinational, randomised, double-blind, placebo-controlled, parallelgroupPhase 3 studies randomised patients to receive placebo or lumacaftor (600 mgonce daily [qd] or 400 mg every 12 hours [q12h]) in combination with ivacaftor (250 mgq12h) for 24 weeks. Prespecified analyses of pooled efficacy and safety data by lungfunction, as measured by percent predicted forced expiratory volume in 1 second(ppFEV1), were performed for patients with baseline ppFEV1 <40 (n=81) and ≥40(n=1016) and screening ppFEV1 <70 (n=730) and ≥70 (n=342). These studies wereregistered with ClinicalTrials.gov (NCT01807923 and NCT01807949). Findings The studies were conducted from April 2013 through April 2014.Improvements in the primary endpoint, absolute change from baseline at week 24 inppFEV1, were observed with both lumacaftor/ivacaftor doses in the subgroup withbaseline ppFEV1 <40 (least-squares mean difference versus placebo was 3∙7 and 3.3percentage points for lumacaftor 600 mg qd/ivacaftor 250 mg q12h and lumacaftor 400mg q12h/ivacaftor 250 mg q12h, respectively [p<0∙05] and in the subgroup with baselineppFEV1 ≥40 (3∙3 and 2∙8 percentage points, respectively [p<0∙001]). Similar absoluteimprovements versus placebo in ppFEV1 were observed in subgroups with screening 4ppFEV1 <70 (3∙3 and 3∙3 percentage points for lumacaftor 600 mg qd/ivacaftor 250 mgq12h and lumacaftor 400 mg q12h/ivacaftor 250 mg q12h, respectively [p<0∙001]) and≥70 (3∙3 and 1∙9 percentage points, respectively [p=0.002] and [p=0∙079]). Increases inBMI and reduction in number of pulmonary exacerbation events were observed in bothLUM/IVA dose groups vs placebo across all lung function subgroups. Treatment wasgenerally well tolerated, although the incidence of some respiratory adverse events washigher with active treatment than with placebo. Interpretation Lumacaftor/ivacaftor combination therapy benefits patients homozygousfor Phe508del CFTR who have varying degrees of lung function impairment. Funding Vertex Pharmaceuticals Incorporated.
Resumo:
BACKGROUND: Pulmonary fibrosis is a debilitating and lethal disease with no effective treatment options. Understanding the pathological processes at play will direct the application of novel therapeutic avenues. Hypoxia has been implicated in the pathogenesis of pulmonary fibrosis yet the precise mechanism by which it contributes to disease progression remains to be fully elucidated. It has been shown that chronic hypoxia can alter DNA methylation patterns in tumour-derived cell lines. This epigenetic alteration can induce changes in cellular phenotype with promoter methylation being associated with gene silencing. Of particular relevance to idiopathic pulmonary fibrosis (IPF) is the observation that Thy-1 promoter methylation is associated with a myofibroblast phenotype where loss of Thy-1 occurs alongside increased alpha smooth muscle actin (α-SMA) expression. The initial aim of this study was to determine whether hypoxia regulates DNA methylation in normal human lung fibroblasts (CCD19Lu). As it has been reported that hypoxia suppresses Thy-1 expression during lung development we also studied the effect of hypoxia on Thy-1 promoter methylation and gene expression.
METHODS: CCD19Lu were grown for up to 8 days in hypoxia and assessed for global changes in DNA methylation using flow cytometry. Real-time PCR was used to quantify expression of Thy-1, α-SMA, collagen I and III. Genomic DNA was bisulphite treated and methylation specific PCR (MSPCR) was used to examine the methylation status of the Thy-1 promoter.
RESULTS: Significant global hypermethylation was detected in hypoxic fibroblasts relative to normoxic controls and was accompanied by increased expression of myofibroblast markers. Thy-1 mRNA expression was suppressed in hypoxic cells, which was restored with the demethylating agent 5-aza-2'-deoxycytidine. MSPCR revealed that Thy-1 became methylated following fibroblast exposure to 1% O2.
CONCLUSION: These data suggest that global and gene-specific changes in DNA methylation may play an important role in fibroblast function in hypoxia.