108 resultados para Pseudo tools
Resumo:
We describe a protocol for the generation and validation of bacteria microarrays and their application to the study of specific features of the pathogen's surface and interactions with host receptors. Bacteria were directly printed on nitrocellulose-coated glass slides, using either manual or robotic arrayers, and printing quality, immobilization efficiency and stability of the arrays were rigorously controlled by incorporating a fluorescent dye into the bacteria. A panel of wild type and mutant strains of the human pathogen Klebsiella pneumoniae, responsible for nosocomial and community-acquired infections, was selected as model bacteria, and SYTO-13 was used as dye. Fluorescence signals of the printed bacteria were found to exhibit a linear concentration-dependence in the range of 1 x 10(8) to 1 x 10(9) bacteria per ml. Similar results were obtained with Pseudomonas aeruginosa and Acinetobacter baumannii, two other human pathogens. Successful validation of the quality and applicability of the established microarrays was accomplished by testing the capacity of the bacteria array to detect recognition by anti-Klebsiella antibodies and by the complement subcomponent C1q, which binds K. pneumoniae in an antibody-independent manner. The biotin/AlexaFluor-647-streptavidin system was used for monitoring binding, yielding strain-and dose-dependent signals, distinctive for each protein. Furthermore, the potential of the bacteria microarray for investigating specific features, e.g. glycosylation patterns, of the cell surface was confirmed by examining the binding behaviour of a panel of plant lectins with diverse carbohydrate-binding specificities. This and other possible applications of the newly developed arrays, as e.g. screening/evaluation of compounds to identify inhibitors of host-pathogen interactions, make bacteria microarrays a useful and sensitive tool for both basic and applied research in microbiology, biomedicine and biotechnology.
Resumo:
It remains challenging to accurately predict whether an individual arteriovenous fistula (AVF) will mature and be useable for haemodialysis vascular access. Current best practice involves the use of routine clinical assessment and ultrasonography complemented by selective venography and magnetic resonance imaging. The purpose of this literature review is to describe current practices in relation to pre-operative assessment prior to AVF formation and highlight potential areas for future research to improve the clinical prediction of AVF outcomes.
Resumo:
Rationale, aims and objectives: This study aimed to determine the value of using a mix of clinical pharmacy data and routine hospital admission spell data in the development of predictive algorithms. Exploration of risk factors in hospitalized patients, together with the targeting strategies devised, will enable the prioritization of clinical pharmacy services to optimize patient outcomes.
Methods: Predictive algorithms were developed using a number of detailed steps using a 75% sample of integrated medicines management (IMM) patients, and validated using the remaining 25%. IMM patients receive targeted clinical pharmacy input throughout their hospital stay. The algorithms were applied to the validation sample, and predicted risk probability was generated for each patient from the coefficients. Risk threshold for the algorithms were determined by identifying the cut-off points of risk scores at which the algorithm would have the highest discriminative performance. Clinical pharmacy staffing levels were obtained from the pharmacy department staffing database.
Results: Numbers of previous emergency admissions and admission medicines together with age-adjusted co-morbidity and diuretic receipt formed a 12-month post-discharge and/or readmission risk algorithm. Age-adjusted co-morbidity proved to be the best index to predict mortality. Increased numbers of clinical pharmacy staff at ward level was correlated with a reduction in risk-adjusted mortality index (RAMI).
Conclusions: Algorithms created were valid in predicting risk of in-hospital and post-discharge mortality and risk of hospital readmission 3, 6 and 12 months post-discharge. The provision of ward-based clinical pharmacy services is a key component to reducing RAMI and enabling the full benefits of pharmacy input to patient care to be realized.
Resumo:
Illegal, Unreported and Unregulated fishing has had a major role in the overexploitation of global fish populations. In response, international regulations have been imposed and many fisheries have been 'eco-certified' by consumer organizations, but methods for independent control of catch certificates and eco-labels are urgently needed. Here we show that, by using gene-associated single nucleotide polymorphisms, individual marine fish can be assigned back to population of origin with unprecedented high levels of precision. By applying high differentiation single nucleotide polymorphism assays, in four commercial marine fish, on a pan-European scale, we find 93-100% of individuals could be correctly assigned to origin in policy-driven case studies. We show how case-targeted single nucleotide polymorphism assays can be created and forensically validated, using a centrally maintained and publicly available database. Our results demonstrate how application of gene-associated markers will likely revolutionize origin assignment and become highly valuable tools for fighting illegal fishing and mislabelling worldwide.
Resumo:
The growing accessibility to genomic resources using next-generation sequencing (NGS) technologies has revolutionized the application of molecular genetic tools to ecology and evolutionary studies in non-model organisms. Here we present the case study of the European hake (Merluccius merluccius), one of the most important demersal resources of European fisheries. Two sequencing platforms, the Roche 454 FLX (454) and the Illumina Genome Analyzer (GAII), were used for Single Nucleotide Polymorphisms (SNPs) discovery in the hake muscle transcriptome. De novo transcriptome assembly into unique contigs, annotation, and in silico SNP detection were carried out in parallel for 454 and GAII sequence data. High-throughput genotyping using the Illumina GoldenGate assay was performed for validating 1,536 putative SNPs. Validation results were analysed to compare the performances of 454 and GAII methods and to evaluate the role of several variables (e.g. sequencing depth, intron-exon structure, sequence quality and annotation). Despite well-known differences in sequence length and throughput, the two approaches showed similar assay conversion rates (approximately 43%) and percentages of polymorphic loci (67.5% and 63.3% for GAII and 454, respectively). Both NGS platforms therefore demonstrated to be suitable for large scale identification of SNPs in transcribed regions of non-model species, although the lack of a reference genome profoundly affects the genotyping success rate. The overall efficiency, however, can be improved using strict quality and filtering criteria for SNP selection (sequence quality, intron-exon structure, target region score).
Resumo:
A collection of software and hardware tools and environments that facilitate collective networked performance between electronic musicians. Tools include 'Chat Monkey', a live chat tool for performance, 'DMA Sequencing', a step sequencer using open sound control messaging and multi nodal control, 'tutti, duet, trio, solo, quartet', an ensemble management environment, and 'Por Larrañaga', a cigar box based electro-acoustic instrument with embedded sensors and controllers. Notable performances: w/BLISS, NCAD, Dublin, 1 March 2015; w/BLISS, NI Science Festival, Belfast, 21 Feb 2015
Resumo:
Seafloor massive sulfide (SMS) mining will likely occur at hydrothermal systems in the near future. Alongside their mineral wealth, SMS deposits also have considerable biological value. Active SMS deposits host endemic hydrothermal vent communities, whilst inactive deposits support communities of deep water corals and other suspension feeders. Mining activities are expected to remove all large organisms and suitable habitat in the immediate area, making vent endemic organisms particularly at risk from habitat loss and localised extinction. As part of environmental management strategies designed to mitigate the effects of mining, areas of seabed need to be protected to preserve biodiversity that is lost at the mine site and to preserve communities that support connectivity among populations of vent animals in the surrounding region. These "set-aside" areas need to be biologically similar to the mine site and be suitably connected, mostly by transport of larvae, to neighbouring sites to ensure exchange of genetic material among remaining populations. Establishing suitable set-asides can be a formidable task for environmental managers, however the application of genetic approaches can aid set-aside identification, suitability assessment and monitoring. There are many genetic tools available, including analysis of mitochondrial DNA (mtDNA) sequences (e.g. COI or other suitable mtDNA genes) and appropriate nuclear DNA markers (e.g. microsatellites, single nucleotide polymorphisms), environmental DNA (eDNA) techniques and microbial metagenomics. When used in concert with traditional biological survey techniques, these tools can help to identify species, assess the genetic connectivity among populations and assess the diversity of communities. How these techniques can be applied to set-aside decision making is discussed and recommendations are made for the genetic characteristics of set-aside sites. A checklist for environmental regulators forms a guide to aid decision making on the suitability of set-aside design and assessment using genetic tools. This non-technical primer document represents the views of participants in the VentBase 2014 workshop.
Resumo:
We have performed an R-matrix with pseudo-states (RMPS) calculation of electron-impact excitation in C2+.Collision strengths and effective collision strengths were determined for excitation between the lowest 24 terms, including all those arising from the 2s3l and 2s4l configurations. In the RMPS calculation, 238 terms (90 spectroscopic and 148 pseudo-state) were employed in the close-coupling (CC) expansion of the target. In order to investigate the significance of coupling to the target continuum and highly excited bound states, we compare the RMPS results with those from an R-matrix calculation that incorporated all 238 terms in the configuration- interaction expansion, but only the lowest 44 spectroscopic terms in the CC expansion. We also compare our effective collision strengths with those from an earlier 12-state R-matrix calculation (Berrington et al 1989 J. Phys. B: At.Mol. Opt. Phys. 22 665). The RMPS calculation was extremely large, involving (N +1)-electron Hamiltonian matrices of dimension up to 36 085, and required the use of our recently completed suite of parallel R-matrix programs. The full set of effective collision strengths fromourRMPS calculation is available at theOakRidgeNationalLaboratoryControlledFusion Atomic Data Center web site. 1.
Resumo:
Electron-impact ionization cross sections for argon are calculated using both non-perturbative R-matrix with pseudo-states (RMPS) and perturbative distorted-wave methods. At twice the ionization potential, the 3p(61)S ground-term cross section from a distorted-wave calculation is found to be a factor of 4 above crossed-beams experimental measurements, while with the inclusion of term-dependent continuum effects in the distorted-wave method, the perturbative cross section still remains almost a factor of 2 above experiment. In the case of ionization from the metastable 3p(5)4s(3)P term, the distorted-wave ionization cross section is also higher than the experimental cross section. On the other hand, the ground-term cross section determined from a nonperturbative RMPS calculation that includes 27 LS spectroscopic terms and another 282 LS pseudo-state terms to represent the high Rydberg states, and the target continuum is found to be in excellent agreement with experimental measurements, while the RMPS result is below the experimental cross section for ionization from the metastable term. We conclude that both continuum term dependence and interchannel coupling effects, which are included in the RMPS method, are important for ionization from the ground term, and interchannel coupling is also significant for ionization from the metastable term
Resumo:
Real-space grids are a powerful alternative for the simulation of electronic systems. One of the main advantages of the approach is the flexibility and simplicity of working directly in real space where the different fields are discretized on a grid, combined with competitive numerical performance and great potential for parallelization. These properties constitute a great advantage at the time of implementing and testing new physical models. Based on our experience with the Octopus code, in this article we discuss how the real-space approach has allowed for the recent development of new ideas for the simulation of electronic systems. Among these applications are approaches to calculate response properties, modeling of photoemission, optimal control of quantum systems, simulation of plasmonic systems, and the exact solution of the Schrödinger equation for low-dimensionality systems.
Resumo:
Virtual Reality techniques are relatively new, having experienced significant development only during the last few years, in accordance with the progress achieved by computer science and hardware and software technologies. The study of such advanced design systems has led to the realization of an immersive environment in which new procedures for the evaluation of product prototypes, ergonomics and manufacturing operations have been simulated. The application of the environment realized to robotics, ergonomics, plant simulations and maintainability verifications has allowed us to highlight the advantages offered by a design methodology: the possibility of working on the industrial product in the first phase of conception; of placing the designer in front of the virtual reproduction of the product in a realistic way; and of interacting with the same concept. The aim of this book is to present an updated vision of VM through different aspects. We will describe the trends and results achieved in the automotive, aerospace and railway fields, in terms of the Digital Product Creation Process to design the product and the manufacturing process.