109 resultados para Port systemic shunt
Resumo:
The simultaneous delivery of multiple cancer drugs in combination therapies to achieve optimal therapeutic effects in patients can be challenging. This study investigated whether co-encapsulation of the BH3-mimetic ABT-737 and the topoisomerase I inhibitor camptothecin (CPT) in PEGylated polymeric nanoparticles (NPs) was a viable strategy for overcoming their clinical limitations and to deliver both compounds at optimal ratios. We found that thrombocytopenia induced by exposure to ABT-737 was diminished through its encapsulation in NPs. Similarly, CPT-associated leukopenia and gastrointestinal toxicity were reduced compared with the administration of free CPT. In addition to the reduction of dose-limiting side effects, the co-encapsulation of both anticancer compounds in a single NP produced synergistic induction of apoptosis in both in vitro and in vivo colorectal cancer models. This strategy may widen the therapeutic window of these and other drugs and may enhance the clinical efficacy of synergistic drug combinations.
Resumo:
This is the protocol for a review and there is no abstract. The objectives are as follows:
The primary objective of this review is to evaluate the effects of non-pharmacological interventions among cancer patients targeted at maintaining cognitive function or ameliorating cognitive impairment as a result of cancer or receipt of systemic cancer treatment (i.e. chemotherapy or hormonal therapies in isolation or combination with other treatments). Patients who have received treatments such as cranial radiation for central nervous system tumours or metastases are not the focus of this review and will be excluded.
A second objective is to evaluate the effectiveness of non-pharmacological interventions for improving non-cognitive outcomes e.g. quality of life among this population.
Thirdly, we will extract and analyse data regarding the duration of intervention effects.
Fourthly, we will examine each study to identify safety as an outcome and incorporate information on intervention safety where possible. Evidence for the review will be based on data from randomised trials.
Resumo:
The proportion of adults over the age of 60 years is expanding rapidly across European Union countries, including the Republic of Ireland. As the older population has grown faster than the total population, the proportion of older persons relative to the rest of the population has increased considerably (Figure 1). This trend mirrors the arrival of the “baby boomer� generation into early old age and will have wide ranging effects on social, political and economic spheres as well as presenting significant challenges for healthcare delivery and public healthcare policy.
Resumo:
Nanoparticles offer alternative options in cancer therapy both as drug delivery carriers and as direct therapeutic agents for cancer cell inactivation. More recently, gold nanoparticles (AuNPs) have emerged as promising radiosensitizers achieving significantly elevated radiation dose enhancement factors when irradiated with both kilo-electron-volt and mega-electronvolt X-rays. Use of AuNPs in radiobiology is now being intensely driven by the desire to achieve precise energy deposition in tumours. As a consequence, there is a growing demand for efficient and simple techniques for detection, imaging and characterization of AuNPs in both biological and tumour samples. Spatially accurate imaging on the nanoscale poses a serious challenge requiring high- or super-resolution imaging techniques. In this mini review, we discuss the challenges in using AuNPs as radiosensitizers as well as various current and novel imaging techniques designed to validate the uptake, distribution and localization in mammalian cells. In our own work, we have used multiphoton excited plasmon resonance imaging to map the AuNP intracellular distribution. The benefits and limitations of this approach will also be discussed in some detail. In some cases, the same "excitation" mechanism as is used in an imaging modality can be harnessed tomake it also a part of therapymodality (e.g. phototherapy)-such examples are discussed in passing as extensions to the imaging modality concerned.
Resumo:
Vaccination procedures within the cattle industry are important disease control tools to minimize economic and welfare burdens associated with respiratory pathogens. However, new vaccine, antigen and carrier technologies are required to combat emerging viral strains and enhance the efficacy of respiratory vaccines, particularly at the point of pathogen entry. New technologies, specifically metabolomic profiling, could be applied to identify metabolite immune-correlates representative of immune protection following vaccination aiding in the design and screening of vaccine candidates. This study for the first time demonstrates the ability of untargeted UPLC-MS metabolomic profiling to identify metabolite immune correlates characteristic of immune responses following mucosal vaccination in calves. Male Holstein Friesian calves were vaccinated with Pfizer Rispoval® PI3 + RSV intranasal vaccine and metabolomic profiling of post-vaccination plasma revealed 12 metabolites whose peak intensities differed significantly from controls. Plasma levels of glycocholic acid, N-[(3α,5β,12α)-3,12-Dihydroxy-7,24-dioxocholan-24-yl]glycine, uric acid and biliverdin were found to be significantly elevated in vaccinated animals following secondary vaccine administration, whereas hippuric acid significantly decreased. In contrast, significant upregulation of taurodeoxycholic acid and propionylcarnitine levels were confined to primary vaccine administration. Assessment of such metabolite markers may provide greater information on the immune pathways stimulated from vaccine formulations and benchmarking early metabolomic responses to highly immunogenic vaccine formulations could provide a means for rapidly assessing new vaccine formulations. Furthermore, the identification of metabolic systemic immune response markers which relate to specific cell signaling pathways of the immune system could allow for targeted vaccine design to stimulate key pathways which can be assessed at the metabolic level.
Resumo:
New Findings
What is the central question of this study?Exercise performance is limited during hypoxia by a critical reduction in cerebral and skeletal tissue oxygenation. To what extent an elevation in systemic free radical accumulation contributes to microvascular deoxygenation and the corresponding reduction in maximal aerobic capacity remains unknown.What is the main finding and its importance?We show that altered free radical metabolism is not a limiting factor for exercise performance in hypoxia, providing important insight into the fundamental mechanisms involved in the control of vascular oxygen transport.
Exercise performance in hypoxia may be limited by a critical reduction in cerebral and skeletal tissue oxygenation, although the underlying mechanisms remain unclear. We examined whether increased systemic free radical accumulation during hypoxia would be associated with elevated microvascular deoxygenation and reduced maximal aerobic capacity (). Eleven healthy men were randomly assigned single-blind to an incremental semi-recumbent cycling test to determine in both normoxia (21% O2) and hypoxia (12% O2) separated by a week. Continuous-wave near-infrared spectroscopy was employed to monitor concentration changes in oxy- and deoxyhaemoglobin in the left vastus lateralis muscle and frontal cerebral cortex. Antecubital venous blood samples were obtained at rest and at to determine oxidative (ascorbate radical by electron paramagnetic resonance spectroscopy), nitrosative (nitric oxide metabolites by ozone-based chemiluminescence and 3-nitrotyrosine by enzyme-linked immunosorbent assay) and inflammatory stress biomarkers (soluble intercellular/vascular cell adhesion 1 molecules by enzyme-linked immunosorbent assay). Hypoxia was associated with increased cerebral and muscle tissue deoxygenation and lower (P < 0.05 versus normoxia). Despite an exercise-induced increase in oxidative–nitrosative–inflammatory stress, hypoxia per se did not have an additive effect (P > 0.05 versus normoxia). Consequently, we failed to observe correlations between any metabolic, haemodynamic and cardiorespiratory parameters (P > 0.05). Collectively, these findings suggest that altered free radical metabolism cannot explain the elevated microvascular deoxygenation and corresponding lower in hypoxia. Further research is required to determine whether free radicals when present in excess do indeed contribute to the premature termination of exercise in hypoxia.
Resumo:
Aim To investigate associations between periodontal disease pathogens and levels of systemic inflammation measured by C-reactive protein (CRP). Methods A representative sample of dentate 60-70-year-old men in Northern Ireland had a comprehensive periodontal examination. Men taking statins were excluded. Subgingival plaque samples were analysed by quantitative real time PCR to identify the presence of Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Treponema denticola and Tannerella forsythia. High-sensitivity CRP (mg/l) was measured from fasting blood samples. Multiple linear regression analysis was performed using log-transformed CRP concentration as the dependent variable, with the presence of each periodontal pathogen as predictor variables, with adjustment for various potential confounders. Results A total of 518 men (mean age 63.6 SD 3.0 years) were included in the analysis. Multiple regression analysis showed that body mass index (p < 0.001), current smoking (p < 0.01), the detectable presence of P. gingivalis (p < 0.01) and hypertension (p = 0.01), were independently associated with an increased CRP. The detectable presence of P. gingivalis was associated with a 20% (95% confidence interval 4-35%) increase in CRP (mg/l) after adjustment for all other predictor variables. Conclusion In these 60-70-year-old dentate men, the presence of P. gingivalis in subgingival plaque was significantly associated with a raised level of C-reactive protein.
Resumo:
The preparation of Janus fibers using a new side-by-side electrospinning process is reported. By manipulating the angle between the two ports of the spinneret emitting the working fluids, Janus nanofibers with tunable structures in terms of width, interfacial area and also volume of each side can be easily fabricated.
Resumo:
A practical method to achieve both decoupling and six polarisation states by employing the mode-based approach for a four-element antenna is presented. The eigenmode theory as well as a practical implementation scheme are presented. The resulting approach can operate with vertical, horizontal, slant +45°, slant -45°, right-hand circular polarisation, or left-hand circular polarisation. A prototype has been manufactured and measured results show good agreement with simulations.