236 resultados para Plastics.
Resumo:
This study describes the formulation and physicochemical characterization of poly(acrylic acid) (PAA) organogels, designed as bioactive implants for improved treatment of infectious diseases of the oral cavity. Organogels were formulated containing a range of concentrations of PAA (3-10% w/w) and metronidazole (2 or 5% w/w, representing a model antimicrobial agent) in different nonaqueous solvents, namely, glycerol (Gly), polyethylene glycol (PEG 400), or propylene glycol (PG). Characterization of the organogels was performed using flow rheometry, compressional analysis, oscillatory rheometry, in vitro mucoadhesion, moisture uptake, and drug release, methods that provide information pertaining to the nonclinical and clinical use of these systems. Increasing the concentration of PAA significantly increased the consistency, compressibility, storage modulus, loss modulus, dynamic viscosity, mucoadhesion, and the rate of drug release. These observations may be accredited to enhanced molecular polymer entanglement. In addition, the choice of solvent directly affected the physicochemical parameters of the organogels, with noticeable differences observed between the three solvents examined. These differences were accredited to the nature of the interaction of PAA with each solvent and, importantly, the density of the resultant physical cross-links. Good correlation was observed between the viscoelastic properties and drug release, with the exception of glycerol-based formulations containing 5 and 10% w/w PAA. This disparity was due to excessive swelling during the dissolution analysis. Ideally, formulations should exhibit controlled drug release, high viscoelasticity, and mucoadhesion, but should flow under minimal stresses. Based on these criteria, PEG 400-based organogels composed of 5% or 10% w/w PAA exhibited suitable physicochemical properties and are suggested to be a potentially interesting strategy for use as bioactive implants designed for use in the oral cavity. © 2008 American Chemical Society.
Resumo:
The effect of tacticity on the conformational properties of poly(olefin sulfone)s was studied. Tactic polymers, prepared from racemic thiirane monomers using chiral inititators were compared with atactic polymers prepared by free radical co-polymerisation of the 1-olefin with sulfur dioxide. Analysis of the XRD patterns showed that the tactic polymers formed more ordered structures in the bulk with longer layer spacings, consistent with a model in which their side chains meet at the tips in contrast with the atactic polymers whose side chains interdigitate. 13C MAS nmr experiments suggest that as tacticity increases so too does the proportion of C-S bonds in the gauche conformation, however the proportion of S-C bonds in the trans conformation falls, in contrast to a reported molecular mechanics study. Finally, DSC measurements on the polymers with longer side chains showed the presence of two endotherms on heating, illustrating definite liquid crystalline behaviour.
Resumo:
This article reports on the results of ongoing work in which the foaming characteristics of metallocene-catalyzed linear low density polyethylenes for rotational molding are investigated. Earlier publications related rheological and thermal parameters to the polymer structure and mechanical properties and found that metallocene polyethylene can be used in rotational foam molding to produce a foam that will perform as well as a Ziegler-Natta catalyzed foam. Through adjustments to molding conditions, the significant processing and physical material parameters, which optimize metallocene catalyzed linear low-density polyethylene foam structure, have been identified. This article details the optimum processing route for the production of two layer skin/foam parts using the drop box method. © SAGE Publications 2007.