124 resultados para Photo-catalytic
Resumo:
Aiming at inexpensive Brønsted-acidic ionic liquids, suitable for industrial-scale catalysis, a family of protonic ionic liquids based on nitrogen bases and sulfuric acid has been developed. Variation of the molar ratio of sulfuric acid, χH2SO4, was used to tune acidity. The liquid structure was studied using 1H NMR and IR spectroscopies, revealing the existence of hydrogen-bonded clusters, [(HSO4)(H2SO4)]−, for χH2SO4 > 0.50. Acidity, quantified by Gutmann Acceptor Number (AN), was found to be closely related to the liquid structure. The ionic liquids were employed as acid catalysts in a model reaction; Fischer esterification of acetic acid with 1-butanol. The reaction rate depended on two factors; for χH2SO4 > 0.50, the key parameter was acidity (expressed as AN value), while for χH2SO4 > 0.50 it was the mass transport (solubility of starting materials in the ionic liquid phase). Building on this insight, the ionic liquid catalyst and reaction conditions have been chosen. Conversion values of over 95% were achieved under exceptionally mild conditions, and using an inexpensive ionic liquid, which could be recycled up to eight times without diminution in conversion or selectivity. It has been demonstrated how structural studies can underpin rational design and development of an ionic liquid catalyst, and in turn lead to a both greener and economically viable process.
Resumo:
The fluorophore-spacer1-receptor1-spacer2-receptor2 system (where receptor2 alone is photoredox-inactive) shows ionically tunable proton-induced fluorescence off-on switching, which is reminiscent of thermionic triode behavior. This also represents a new extension to modular switch systems based on photoinduced electron transfer (PET) towards the emulation of analogue electronic devices.
Resumo:
N,O-ligated Pd(II) complexes show considerable promise for the oxidation of challenging secondary aliphatic alcohols. The crystal structures of the highly active complexes containing the 8-hydroxyquinoline-2-carboxylic acid (HCA) and 8-hydroxyquinoline-2-sulfonic acid (HSA) ligands have been obtained. The (HSA)Pd(OAc)2 system can effectively oxidise a range of secondary alcohols, including unactivated alcohols, within 4–6 h using loadings of 0.5 mol%, while lower loadings (0.2 mol%) can be employed with extended reaction times. The influence of reaction conditions on catalyst degradation was also examined in these studies.
Resumo:
The ability of a gold palladium bimetallic catalyst to selectively oxidise toluene has been used to enhance the hydrocarbon selective catalytic reduction of NOx, a reaction in which the interaction of partial oxidation intermediates is considered important. The combination of gold with palladium has a synergistic effect, producing a catalyst that is more active for NOx conversion than the arithmetic sum of the corresponding mono-metallic materials. Three regimes in the conversion profile of the AuPd catalyst are proposed relating to production and consumption of toluene derived species, such as benzaldehyde and benzonitrile. The possible role of these reaction intermediates in the toluene HC-SCR reaction is examined. Using 15NO, the formation of N2 and N2O is observed via the direct interaction between the nitrogen atom of benzonitrile and 15NO. The higher activity of the bimetallic catalyst for the NOx reduction reaction by toluene is discussed in the context of these partial oxidation intermediates.
Resumo:
A new pathway to (+)-inthomycin C is reported that exploits an O-directed free radical hydrostannation reaction on (−)-12 and a Stille cross-coupling as key steps. Significantly, the latter process was effected on 19 where a gauche-pentane repulsive interaction could interfere. Our stereochemical studies on the alkynol (−)-12 and the enyne (+)-7 confirm that Ryu and Hatakeyama’s (3S)-stereochemical revision of (+)-inthomycin C is invalid and that Zeeck and Taylor’s original (3R)-stereostructure for (+)-inthomycin C is correct.
Resumo:
Biofilm growth on stone surfaces is a significant contributing factor to stone biodeterioration. Current market based biocides are hazardous to the environment and to public health. We have investigated the photo-dynamic effect of methylene blue (MB) in the presence of hydrogen peroxide (H2O2) on the destruction of the cyanobacterium Synechococcus leopoliensis (S. leopoliensis) under irradiation with visible light. Data presented in this paper illustrate that illumination of S. leopoliensis in the presence of a photosensitiser (MB) and H2O2 results in the decomposition of both the cyanobacterium and the photosensitiser. The presence of MB and H2O2 affects the viability of the photosensitiser and the cyanobacterium with the fluorescence of both decreasing by 80% over the irradiation time investigated. The photo-dynamic effect was observed under aerobic and anaerobic conditions indicating that oxygen was not necessary for the process. This novel combination could be effective for the remediation of biofilm colonised stone surfaces
Resumo:
In this work, a laser-produced plasma extreme ultraviolet source and a free electron laser were used to create Ne photo-ionized plasmas. In both cases, a radiation beam was focused onto a gas stream injected into a vacuum chamber synchronously with the radiation pulse. Extreme ultraviolet radiation from the plasma spanned a wide spectral range with pronounced maximum centered at lambda = 11 +/- 1 nm while the free electron laser pulses were emitted at a wavelength of 32 nm. The power density of the focused plasma radiation was approximately 2 x 10(7) W/cm(2) and was seven orders of magnitude lower compared with the focused free electron laser beam. Radiation fluences in both experimental conditions were comparable. Despite quite different spectral characteristics and extremely different power densities, emission spectra of both photo-ionized plasmas consist of the same spectral lines within a wavelength range of 20 to 50 nm, however, with different relative intensities of the corresponding lines. The dominating spectral lines originated from singly charged ions (Ne II); however, Ne III lines were also detected. Additionally, computer simulations of the emission spectra, obtained for photo-ionized plasmas, driven by the plasma extreme ultraviolet source, were performed. The corresponding measured and calculated spectra are presented. An electron temperature and ionic composition were estimated. Differences between the experimental spectra, obtained for both irradiation conditions, were analyzed. The differences were attributed mainly to different energies of driving photons.
Resumo:
Platinum (Pt) nanocrystals have demonstrated to be an effective catalyst in many heterogeneous catalytic processes. However, pioneer facets with highest activity have been reported differently for various reaction systems. Although Pt has been the most important counter electrode material for dye-sensitized solar cells (DSCs), suitable atomic arrangement on the exposed crystal facet of Pt for triiodide reduction is still inexplicable. Using density functional theory, we have investigated the catalytic reaction processes of triiodide reduction over {100}, {111} and {411} facets, indicating that the activity follows the order of Pt(111) > Pt(411) > Pt(100). Further, Pt nanocrystals mainly bounded by {100}, {111} and {411} facets were synthesized and used as counter electrode materials for DSCs. The highest photovoltaic conversion efficiency of Pt(111) in DSCs confirms the predictions of the theoretical study. These findings have deepened the understanding of the mechanism of triiodide reduction at Pt surfaces and further screened the best facet for DSCs successfully.
Resumo:
Understanding and then designing efficient catalysts for CO oxidation at low temperature is one of the hottest topics in heterogeneous catalysis. Among the existing catalysts. Co3O4 is one of the most interesting systems: Morphology-controlled Co3O4 exhibits exceedingly high activity. In this study, by virtue of extensive density functional theory (OFT) calculations, the favored reaction mechanism in the system is identified. Through careful analyses on the energetics of elementary reactions on Co3O4(1 1 0)-A, Co3O4(1 1 0)-B, Co3O4(1 1 1) and Co3O4(1 0 0), which are the commonly exposed surfaces of Co3O4, we find the following regarding the relation between the activity and structure: (i) Co3+ is the active site rather than Co2+: and (ii) the three-coordinated surface oxygen bonded with three Co3+ may be slightly more reactive than the other two kinds of lattice oxygen, that is, the two-coordinated 0 bonded with one Co2+ and one Co3+ and the three-coordinated 0 bonded with one Co2+ and two Co3+. Following the results from Co3O4, we also extend the investigation to MnO2(1 1 0), Fe3O4(1 1 0), CuO(1 1 0) and CuO(1 1 1), which are the common metal oxide surfaces, aiming to understand the oxides in general. Three properties, such as the CO adsorption strength, the barrier of CO reacting with lattice 0 and the redox capacity, are identified to be the determining factors that can significantly affect the activity of oxides. Among these oxides, Co3O4 is found to be the most active one, stratifying all the three requirements. A new scheme to decompose barriers is introduced to understand the activity difference between lattice O-3c and O-2c on (1 1 0)-B surface. By utilizing the scheme, we demonstrate that the origin of activity variance lies in the geometric structures. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Structures and catalytic activities of Au thin films supported at anatase TiO(2)(101)) and a Au substrate are studied by using density functional theory calculations. The results show that O(2) can hardly adsorb at flat and stepped Au thin films, even supported by fully reduced TiO(2)(101) that can highly disperse Au atoms and offer strong electronic promotion. Interestingly, in both oxide-supported and pure Au. systems, wire-structured Au can adsorb both CO and O(2) rather strongly, and kinetic analysis suggests its high catalytic activity for low-temperature CO oxidation. The d-band center of Au at the catalytic site is determined to account for the unusual activity of the wire-structured film. A generalized structural model based on the wire-structured film is proposed for active Au, and possible support effects are discussed: Selected oxide surfaces can disperse Au atoms and stabilize the formation of a filmlike structure; they may also serve as a template for the preferential arrangement of Au atoms in a wire structure under low Au coverage.