124 resultados para Ovarian septum


Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: The evolutionarily conserved septin family of genes encode GTP binding proteins involved in a variety of cellular functions including cytokinesis, apoptosis, membrane dynamics and vesicle trafficking. Septin proteins can form hetero-oligomeric complexes and interact with other proteins including actin and tubulin. The human SEPT9 gene on chromosome 17q25.3 has a complex genomic architecture with 18 different transcripts that can encode 15 distinct polypeptides. Two distinct transcripts with unique 5' ends (SEPT9_v4 and SEPT9_v4*) encode the same protein. In tumours the ratio of these transcripts changes with elevated levels of SEPT9_v4* mRNA, a transcript that is translated with enhanced efficiency leading to increased SEPT9_i4 protein.

METHODS: We have examined the effect of over-expression of SEPT9_i4 on the dynamics of microtubule polymer mass in cultured cells.

RESULTS: We show that the microtubule network in SEPT9_i4 over-expressing cells resists disruption by paclitaxel or cold incubation but also repolymerises tubulin more slowly after microtubule depolymerisation. Finally we show that SEPT9_i4 over-expressing cells have enhanced survival in the presence of clinically relevant microtubule acting drugs but not after treatment with DNAinteracting agents.

CONCLUSIONS: Given that SEPT9 over-expression is seen in diverse tumours and in particular ovarian and breast cancer, such data indicate that SEPT9_v4 expression may be clinically relevant and contribute to some forms of drug resistance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objectives: Germline mutations in BRCA1 predispose carriers to a high
incidence of breast and ovarian cancers. The BRCA1 protein functions to maintain
genomic stability via important roles in DNA repair, transcriptional regulation, and
post-replicative repair. Despite functions in processes essential in all cells, BRCA1
loss or mutation leads to tumours predominantly in estrogen-regulated tissues.
Here, we aim to determine if endogenous estrogen metabolites may be an initiator
of genomic instability in BRCA1 deficient cells.

Methods: We analysed DNA DSBs by ?H2AX, 53BP1, and pATM1981
foci and neutral comet assay, estrogen metabolite concentrations by LC-MS/MS,
and BRCA1 transcriptional regulation of metabolism genes by ChIP-chip, ChIP,
and qRT-PCR.

Results: We show that estrogen metabolism is perturbed in BRCA1 deficient
cells resulting in elevated production of 2-hydroxyestradiol (2-OHE2) and 4-hydroxyestradiol (4-OHE2), and decreased production of the protective metabolite
4-methoxyestradiol. We demonstrate that 2-OHE2 and 4-OHE2 treatment leads
to DNA double strand breaks (DSBs) in breast cells, and these DSBs were exacerbated
in both BRCA1 depleted cells and BRCA1 heterozygous cells (harbouring
185delAG mutation). Furthermore, the DSBs were not repaired efficiently in either
BRCA1 depleted or heterozygous cells, and we found that 2-OHE2 and 4-OHE2
treatment generates chromosomal aberrations in BRCA1 depleted cells. We suggest
that the increase in DNA DSBs in BRCA1 deficient cells is due to loss of
both BRCA1 transcriptional repression of estrogen metabolising genes (such as
CYP1A1 and CYP3A4) and loss of transcriptional activation of detoxification
genes (such as COMT).

Conclusions: We suggest that BRCA1 loss results in estrogen driven tumourigenesis
through a combination of increased expression of estrogen metabolising
enzymes and reduced expression of protective enzymes, coupled with a defect in
the repair of DNA DSBs induced by endogenous estrogen metabolites. The overall
effect being an exacerbation of genomic instability in estrogen regulated tissues in
BRCA1 mutation carriers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PHD finger protein 20 (PHF20) is a transcription factor, which was originally identified in glioma patients. PHF20 appears to be a novel antigen in glioma, and has also termed glioma-expressed antigen 2. PHF20 is thought to contribute to the development of cancers, including glioblastoma, lung cancer, colon cancer and ovarian cancer. However, little is known about the function of PHF20 in various cancers. Here we report that PHF20 contains two consensus sites for protein kinase B (PKB) phosphorylation (RxRxxS/T). PKB can directly phosphorylate PHF20 on Ser291 in vitro and in vivo. It has been shown that PKB participates in the tumor suppressor p53 regulated gene expression program and has a direct effect on p21 regulation after DNA damage. UV-induced DNA damage results in accumulation of p53 and PKB activation. Interestingly, PKB-mediated PHF20 phosphorylation led to an inhibition of p53 induction following UV treatment, leading to the reduction of p21 transcriptional activity. Using anti PHF20 and anti pPKB (S473) antibodies, these events were mapped in various human cancer tissues. Taken together, these data suggest that PHF20 is a novel substrate for PKB and its phosphorylation by PKB plays an important role in tumorigenesis via regulating of p53 mediated signaling. © 2012 Elsevier Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

mRNA chimeras from chromosomal translocations often play a role as transforming oncogenes. However, cancer transcriptomes also contain mRNA chimeras that may play a role in tumor development, which arise as transcriptional or post-transcriptional events. To identify such chimeras, we developed a deterministic screening strategy for long-range sequence analysis. High-throughput, long-read sequencing was then performed on cDNA libraries from major tumor histotypes and corresponding normal tissues. These analyses led to the identification of 378 chimeras, with an unexpectedly high frequency of expression (˜2 x 10(-5) of all mRNA). Functional assays in breast and ovarian cancer cell lines showed that a large fraction of mRNA chimeras regulates cell replication. Strikingly, chimeras were shown to include both positive and negative regulators of cell growth, which functioned as such in a cell-type-specific manner. Replication-controlling chimeras were found to be expressed by most cancers from breast, ovary, colon, uterus, kidney, lung, and stomach, suggesting a widespread role in tumor development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVES: The objective of this study was to investigate the relationship between BRCA1 protein expression, as determined by immunohistochemistry, and clinical outcome in uterine serous carcinoma (USC). METHODS: A tissue microarray containing duplicate cores of 73 cases of USC was immunohistochemically stained with mouse anti-BRCA1 (Ab-1) mouse monoclonal (MS110) antibody. The cores were scored in a semiquantitative manner evaluating both the distribution and intensity of nuclear staining. BRCA1 protein expression was correlated with progression-free survival. RESULTS: Seventy-two of 73 cases were assessable, and there was a statistically significant decreased progression-free survival for those cases exhibiting tumor cell nuclei staining of 76% or greater (P = 0.0023). CONCLUSIONS: Our study illustrates that a low level of BRCA1 protein expression is a favorable prognostic indicator in USC, similar to what is observed in high-grade serous ovarian carcinoma. Further studies should focus on the BRCA1 status of USCs at a molecular level and also investigate whether BRCA1 protein expression is associated with response to chemotherapy in USC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sex steroids contribute to modulate GH secretion in man. However, both the exact locus and mechanism by which their actions are exerted still remain not clearly understood. We undertook a number of studies designed to ascertain: (1) whether or not sudden or chronic changes in circulating gonadal steroids may affect GH secretion in normal adults; and (2) the reason(s) for gender-related dimorphic pattern of GH release. The pituitary reserve of GH, as evaluated by means of a GHRH challenge, was similar in women with anorexia nervosa and in normally menstruating women. Estrogenic receptor blockade with tamoxifen (TMX) did not significantly change GHRH-induced GH response in these normal women. Therefore, acute or chronic hypoestrogenism apparently had no important effects at level of somatotrophs. In another group of normal women we tested the possibility that changes in circulating estrogens might induce changes in the hypothalamic-somatotroph rhythm (HSR). GHRH challenges were performed throughout a menstrual cycle, and again after having achieved functional ovarian blockade with a GnRH agonist treatment. Short-term ovarian blockade did not significantly affect the parameters of GH response to GHRH, although it was accompanied by an increase in the number of women ina refractory HSR phase at testing. This suggested a low potentiating effect on the basic pattern of somatostatin (SS) release occurring as a consequence of the decrease in circulating estrogens. In normal men, neither the GH response to GHRH nor the HSR were affected by functional testicular blockade (after GnRH agonist treatment). However, the administration of testosterone enanthate (250 mg) to another group of men increased both the GHRH-induced GH release and the number of subjects in a spontaneous secretory HSR phase at testing; these were reversed by estrogenic receptor blockade with TMS. In another group of normal men, the fraction of GH secreted in pulses (FGHP) during a nocturnal sampling period was significantly decreased by testicular blockade. Other parameters of GH secretion, such as the number of GH pulses and their mean amplitude (A), and the mean plasma GH concentration (MCGH), showed a slight, although not significant, decrease following the lack of androgens. The administration of testosterone enanthate (500 mg) reversed these parameters to values similar to those in the basal study. Interestingly, when tamoxifen was given after testosterone enanthate, A, MCGH and FGHP increased to values significantly higher than in any other experimental condition in that study. In all, these data suggest that 17ß-estradiol may participate in GH modulation by inhibiting the hypothalamic release of somatostatin, while testosterone stimulates it. The results obtained after estrogenic receptor blockade appear to indicate that the effect of testosterone in such a modulation is dependent on its aromatization to 17ß-estradiol. The differential levels of this steroid in both sexes might account for the sexual dimorphic pattern of GH secretion. From other data in the literature, obtained in rats, and our preliminary data in children with constitutional delay of growth and puberty, it is tempting to speculate that the effect of 17ß-estradiol may be exerted by modifying the functional activity of a-2 adrenergic pathways involved in the negative modulation of SS release.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Evidence for non-steroidal anti-inflammatory drugs (NSAIDs) preventing head and neck cancer (HNC) is inconclusive; however, there is some suggestion that aspirin may exert a protective effect.

Methods: Using data from the United States National Cancer Institute Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial, we examined the association between aspirin and ibuprofen use and HNC.

Results: Regular aspirin use was associated with a significant 22% reduction in HNC risk. No association was observed with regular ibuprofen use.

Conclusion: Aspirin may have potential as a chemopreventive agent for HNC, but further investigation is warranted.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Here, we show for the first time, that the familial breast/ovarian cancer susceptibility gene BRCA1 activates the Notch pathway in breast cells by transcriptional upregulation of Notch ligands and receptors in both normal and cancer cells. We demonstrate through chromatin immunoprecipitation assays that BRCA1 is localized to a conserved intronic enhancer region within the Notch ligand Jagged-1 (JAG1) gene, an event requiring ΔNp63. We propose that this BRCA1/ΔNp63-mediated induction of JAG1 may be important the regulation of breast stem/precursor cells, as knockdown of all three proteins resulted in increased tumoursphere growth and increased activity of stem cell markers such as Aldehyde Dehydrogenase 1 (ALDH1). Knockdown of Notch1 and JAG1 phenocopied BRCA1 knockdown resulting in the loss of Estrogen Receptor-α (ER-α) expression and other luminal markers. A Notch mimetic peptide could activate an ER-α promoter reporter in a BRCA1-dependent manner, whereas Notch inhibition using a γ-secretase inhibitor reversed this process. We demonstrate that inhibition of Notch signalling resulted in decreased sensitivity to the anti-estrogen drug Tamoxifen but increased expression of markers associated with basal-like breast cancer. Together, these findings suggest that BRCA1 transcriptional upregulation of Notch signalling is a key event in the normal differentiation process in breast tissue.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Endometrial cancer risk has been directly associated with glycemic load. However, few studies have investigated this link, and the etiological role of specific dietary carbohydrate components remains unclear. Our aim was to investigate associations of carbohydrate intake, glycemic index, and glycemic load with endometrial cancer risk in the US Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial. Recruitment took place in 1993-2001. Over a median of 9.0 years of follow-up through 2009, 386 women developed endometrial cancer among 36,115 considered in the analysis. Dietary intakes were assessed using a 124-item diet history questionnaire. Cox proportional hazards models were applied to calculate hazard ratios and 95% confidence intervals. Significant inverse associations were detected between endometrial cancer risk and total available carbohydrate intake (hazard ratio (HR) = 0.66, 95% confidence interval (CI): 0.49, 0.90), total sugars intake (HR = 0.71, 95% CI: 0.52, 0.96), and glycemic load (HR = 0.63, 95% CI: 0.46, 0.84) when women in the highest quartile of intake were compared with those in the lowest. These inverse associations were strongest among overweight and obese women. No associations with endometrial cancer risk were observed for glycemic index or dietary fiber. Our findings contrast with previous evidence and suggest that high carbohydrate intakes and glycemic loads are protective against endometrial cancer development. Further clarification of these associations is warranted.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Germline mutations in BRCA1 predispose carriers to a high incidence of breast and ovarian cancers. BRCA1 functions to maintain genomic stability through critical roles in DNA repair, cell-cycle arrest, and transcriptional control. A major question has been why BRCA1 loss or mutation leads to tumors mainly in estrogen-regulated tissues, given that BRCA1 has essential functions in all cell types. Here, we report that estrogen and estrogen metabolites can cause DNA double-strand breaks (DSB) in estrogen receptora- negative breast cells and that BRCA1 is required to repair these DSBs to prevent metabolite-induced genomic instability.We found that BRCA1 also regulates estrogen metabolism and metabolite-mediated DNA damage by repressing the transcription of estrogen-metabolizing enzymes, such as CYP1A1, in breast cells. Finally, we used a knock-in human cell model with a heterozygous BRCA1 pathogenic mutation to show how BRCA1 haploinsufficiency affects these processes. Our findings provide pivotal new insights into why BRCA1 mutation drives the formation of tumors in estrogen-regulated tissues, despite the general role of BRCA1 in DNA repair in all cell types. © 2014 American Association for Cancer Research.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: The majority of women (71%) who undergo BRCA1/2 testing—designed to identify genetic mutations associated with increased risk of cancer—receive results that are termed ‘ambiguous’ or ‘uninformative negative’. How women interpret these results and the association with numerical ability was examined. Methods: In this study, 477 women at increased risk for breast and ovarian cancer were recruited via the Cancer Genetics Network. They were presented with information about the four different possible BRCA1/2 test results—positive, true negative, ambiguous and uninformative negative—and asked to indicate which of six options represents the best response. Participants were then asked which treatment options they thought a woman receiving the results should discuss with her doctor. Finally, participants completed measures of objective and subjective numeracy. Results: Almost all of the participants correctly interpreted the positive and negative BRCA1/2 genetic test results. However, they encountered difficulties interpreting the uninformative and ambiguous BRCA1/2 genetic test results. Participants were almost equally likely to think either that the woman had learned nothing from the test result or that she was as likely to develop cancer as the average woman. Highly numerate participants were more likely to correctly interpret inconclusive test results (ambiguous, OR = 1.62; 95% CI [1.28, 2.07]; p < 0.001; uninformative, OR = 1.40; 95% CI [1.10, 1.80]). Discussion: Given the medical and psychological ramifications of genetic testing, healthcare professionals should consider devoting extra effort to ensuring proper comprehension of ambiguous and uninformative negative test results by women. Copyright © 2014 John Wiley & Sons, Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mutations within BRCA1 predispose carriers to a high risk of breast and ovarian cancers. BRCA1 functions to maintain genomic stability through the assembly of multiple protein complexes involved in DNA repair, cell-cycle arrest, and transcriptional regulation. Here, we report the identification of a DNA damage-induced BRCA1 protein complex containing BCLAF1 and other key components of the mRNA-splicing machinery. In response to DNA damage, this complex regulates pre-mRNA splicing of a number of genes involved in DNA damage signaling and repair, thereby promoting the stability of these transcripts/proteins. Further, we show that abrogation of this complex results in sensitivity to DNA damage, defective DNA repair, and genomic instability. Interestingly, mutations in a number of proteins found within this complex have been identified in numerous cancer types. These data suggest that regulation of splicing by the BRCA1-mRNA splicing complex plays an important role in the cellular response to DNA damage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Here, we show for the first time that the familial breast/ovarian cancer susceptibility gene, BRCA1, along with interacting ΔNp63 proteins, transcriptionally upregulate the putative tumour suppressor protein, S100A2. Both BRCA1 and ΔNp63 proteins are required for S100A2 expression. BRCA1 requires ΔNp63 proteins for recruitment to the S100A2 proximal promoter region, while exogenous expression of individual ΔNp63 proteins cannot activate S100A2 transcription in the absence of a functional BRCA1. Consequently, mutation of the ΔNp63/p53 response element within the S100A2 promoter completely abrogates the ability of BRCA1 to upregulate S100A2. S100A2 shows growth control features in a range of cell models. Transient or stable exogenous S100A2 expression inhibits the growth of BRCA1 mutant and basal-like breast cancer cell lines, while short interfering RNA (siRNA) knockdown of S100A2 in non-tumorigenic cells results in enhanced proliferation. S100A2 modulates binding of mutant p53 to HSP90, which is required for efficient folding of mutant p53 proteins, by competing for binding to HSP70/HSP90 organising protein (HOP). HOP is a cochaperone that is required for the efficient transfer of proteins from HSP70 to HSP90. Loss of S100A2 leads to an HSP90-dependent stabilisation of mutant p53 with a concomitant loss of p63. Accordingly, S100A2-deficient cells are more sensitive to the HSP-90 inhibitor, 17-N-allylamino-17-demethoxygeldanamycin, potentially representing a novel therapeutic strategy for S100A2- and BRCA1-deficient cancers. Taken together, these data demonstrate the importance of S100A2 downstream of the BRCA1/ΔNp63 signalling axis in modulating transcriptional responses and enforcing growth control mechanisms through destabilisation of mutant p53.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Autophagy, a "self-eating" cellular process, has dual roles in promoting and suppressing tumor growth, depending on cellular context. PTP4A3/PRL-3, a plasma membrane and endosomal phosphatase, promotes multiple oncogenic processes including cell proliferation, invasion, and cancer metastasis. In this study, we demonstrate that PTP4A3 accumulates in autophagosomes upon inhibition of autophagic degradation. Expression of PTP4A3 enhances PIK3C3-BECN1-dependent autophagosome formation and accelerates LC3-I to LC3-II conversion in an ATG5-dependent manner. PTP4A3 overexpression also enhances the degradation of SQSTM1, a key autophagy substrate. These functions of PTP4A3 are dependent on its catalytic activity and prenylation-dependent membrane association. These results suggest that PTP4A3 functions to promote canonical autophagy flux. Unexpectedly, following autophagy activation, PTP4A3 serves as a novel autophagic substrate, thereby establishing a negative feedback-loop that may be required to fine-tune autophagy activity. Functionally, PTP4A3 utilizes the autophagy pathway to promote cell growth, concomitant with the activation of AKT. Clinically, from the largest ovarian cancer data set (GSE 9899, n = 285) available in GEO, high levels of expression of both PTP4A3 and autophagy genes significantly predict poor prognosis of ovarian cancer patients. These studies reveal a critical role of autophagy in PTP4A3-driven cancer progression, suggesting that autophagy could be a potential Achilles heel to block PTP4A3-mediated tumor progression in stratified patients with high expression of both PTP4A3 and autophagy genes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Paclitaxel is a microtubule inhibitory chemotherapeutic drug that is increasingly used for the treatment of solid tumours. In vitro studies have demonstrated that attenuating the spindle assemble checkpoint (SAC) alters the post-mitotic responses to paclitaxel. Furthermore, the aberrant expression of a number of the SAC proteins, MAD2, BUBR1, and Aurora A kinase, are associated with poor patient prognosis. We have identified a microRNA, miR-433, that regulates the expression of MAD2. Overexpression of miR-433 in Hela cells induced downregulation of MAD2 mRNA and protein expression. We have also shown that Hela cells overexpressing miR-433 and treated with paclitaxel are no longer capable of cyclin B stabilisation, and thus have lost the ability to activate the SAC in response to paclitaxel. In addition, cell viability assays showed that Hela cells overexpressing miR-433 and treated with paclitaxel have an attenuated response to paclitaxel compared with microRNA scrambled controls. We have characterised the levels of miR-433, MAD2 gene expression and MAD2 protein levels in a cohort of ovarian cancer cell lines. Cell viability assays on this cohort revealed that responsiveness to paclitaxel is associated with high MAD2 protein expression and lower miR-433 expression. We hypothesise that the expression of miR-433 when deregulated in cancer leads to altered MAD2 expression and a compromised SAC, a key feature underlying drug resistance to paclitaxel. In a pilot study of paired human breast tumour and normal breast tissue samples we have shown that expression levels of miR-433 are elevated in cancer tissue. Targeting this microRNA in cancer may improve the efficacy of paclitaxel in treating breast cancer and ovarian cancer.