356 resultados para Optical physics
Resumo:
A realistic model of the dipole radiation forces in transverse Doppler cooling (with a s+-s- laser configuration) of an atomic beam of group 13 elements is studied within the quantum-kinetic equation framework. The full energy level sub-structure for such an atom with I = 0 (such as 66Ga) is analysed. Two cooling strategies are investigated; the first involving the 2P3/2 ? 2D5/2 transition and the second a dual laser cooling experiment involving transitions 2P1/2 and 2P3/2 ? 2S1/2. The latter scheme creates a velocity-independent dark-state resonance that inhibits a steady-state dipole cooling force. However, time-dependent calculations show that transient cooling forces are present that could be exploited for laser cooling purposes in pulsed laser fields.
Resumo:
We present a numerical and theoretical study of intense-field single-electron ionization of helium at 390 nm and 780 nm. Accurate ionization rates (over an intensity range of (0.175-34) X10^14 W/ cm^2 at 390 nm, and (0.275 - 14.4) X 10^14 W /cm^2 at 780 nm) are obtained from full-dimensionality integrations of the time-dependent helium-laser Schroedinger equation. We show that the power law of lowest order perturbation theory, modified with a ponderomotive-shifted ionization potential, is capable of modelling the ionization rates over an intensity range that extends up to two orders of magnitude higher than that applicable to perturbation theory alone. Writing the modified perturbation theory in terms of scaled wavelength and intensity variables, we obtain to first approximation a single ionization law for both the 390 nm and 780 nm cases. To model the data in the high intensity limit as well as in the low, a new function is introduced for the rate. This function has, in part, a resemblance to that derived from tunnelling theory but, importantly, retains the correct frequency-dependence and scaling behaviour derived from the perturbative-like models at lower intensities. Comparison with the predictions of classical ADK tunnelling theory confirms that ADK performs poorly in the frequency and intensity domain treated here.
Resumo:
We present calculations of the time delay between single and double ionization of helium, obtained from full-dimensionality numerical integrations of the helium-laser Schroedinger equation. The notion of a quantum mechanical time delay is defined in terms of the interval between correlated bursts of single and double ionization. Calculations are performed at 390 and 780 nm in laser intensities that range from 2 X 10^14 to 14 X 10^14 W /cm^2. We find results consistent with the rescattering model of double ionization but supporting its classical interpretation only at 780 nm.
Resumo:
The dynamics of dissociation of pre-ionized D2+ molecules using intense (10^12–10^15 W cm-2), ultrashort (50 fs), infrared (? = 790 nm) laser pulses are examined. Use of an intensity selective scan technique has allowed the deuterium energy spectrum to be measured over a broad range of intensity. It is found that the dominant emission shifts to lower energies as intensity is increased, in good agreement with corresponding wavepacket simulations. The results are consistent with an interpretation in terms of bond softening, which at high intensity (approximately >3 × 10^14 W cm-2) becomes dominated by dissociative ionization. Angular distribution measurements reveal the presence of slow molecular dissociation, an indication that vibrational trapping mechanisms occur in this molecule.
Resumo:
A novel technique is proposed to control the dissociation mechanism of small diatomic molecules. This technique, relying upon the creation of a coherent nuclear wavepacket, uses intense (> 10(14) W cm(-2)), ultrashort (similar to 10 fs) infrared laser pulses in a pump and probe scheme. In applying this technique to D-2(+) good agreement has been observed between a quantum simulation and experiment. This represents a major step towards quantum state control in molecules, using optical fields.
Resumo:
The probability of multiple ionization of krypton by 50 femtosecond circularly polarized laser pulses, independent of the optical focal geometry, has been obtained for the first time. The excellent agreement over the intensity range 100 TW cm-2 to 100 PW cm-2 with the recent predictions of Kornev et al (2003 Phys. Rev. A 68 043414) provides the first experimental confirmation that non-recollisional electronic excitation can occur in strong-field ionization. This is particularly true for higher stages of ionization, when the laser intensity exceeds 10 PW cm-2 as the energetic departure of the ionized electron(s) diabatically distorts the wavefunctions of the bound electrons. By scaling the probability of ionization by the focal volume, we discuss why this mechanism was not apparent in previous studies.