194 resultados para Opportunistic microorganisms


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chronic lung infection by opportunistic pathogens, such as Pseudomonas aeruginosa and members of the Burkholderia cepacia complex, is a major cause of morbidity and mortality in patients with cystic fibrosis. Outer membrane proteins (OMPs) of gram-negative bacteria are promising vaccine antigen candidates. In this study, we evaluated the immunogenicity, protection, and cross-protection conferred by intranasal vaccination of mice with OMPs from B. multivorans plus the mucosal adjuvant adamantylamide dipeptide (AdDP). Robust mucosal and systemic immune responses were stimulated by vaccination of naive animals with OMPs from B. multivorans and B. cenocepacia plus AdDP. Using a mouse model of chronic pulmonary infection, we observed enhanced clearance of B. multivorans from the lungs of vaccinated animals, which correlated with OMP-specific secretory immunoglobulin A responses. Furthermore, OMP-immunized mice showed rapid resolution of the pulmonary infection with virtually no lung pathology after bacterial challenge with B. multivorans. In addition, we demonstrated that administration of B. multivorans OMP vaccine conferred protection against B. cenocepacia challenge in this mouse infection model, suggesting that OMPs provide cross-protection against the B. cepacia complex. Therefore, we concluded that mucosal immunity to B. multivorans elicited by intranasal vaccination with OMPs plus AdDP could prevent early steps of colonization and infection with B. multivorans and also ameliorate lung tissue damage, while eliciting cross-protection against B. cenocepacia. These results support the notion that therapies leading to increased mucosal immunity in the airways may help patients with cystic fibrosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Burkholderia cenocepacia, a member of the B. cepacia complex, is an opportunistic pathogen that causes serious infections in patients with cystic fibrosis. We identified a six-gene cluster in chromosome 1 encoding a two-component regulatory system (BCAL2831 and BCAL2830) and an HtrA protease (BCAL2829) hypothesized to play a role in the B. cenocepacia stress response. Reverse transcriptase PCR analysis of these six genes confirmed they are cotranscribed and comprise an operon. Genes in this operon, including htrA, were insertionally inactivated by recombination with a newly created suicide plasmid, pGPOmegaTp. Genetic analyses and complementation studies revealed that HtrA(BCAL2829) was required for growth of B. cenocepacia upon exposure to osmotic stress (NaCl or KCl) and thermal stress (44 degrees C). In addition, replacement of the serine residue in the active site with alanine (S245A) and deletion of the HtrA(BCAL2829) PDZ domains demonstrated that these areas are required for protein function. HtrA(BCAL2829) also localizes to the periplasmic compartment, as shown by Western blot analysis and a colicin V reporter assay. Using the rat agar bead model of chronic lung infection, we also demonstrated that inactivation of the htrA gene is associated with a bacterial survival defect in vivo. Together, our data demonstrate that HtrA(BCAL2829) is a virulence factor in B. cenocepacia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Burkholderia cenocepacia, a bacterium commonly found in the environment, is an important opportunistic pathogen in patients with cystic fibrosis (CF). Very little is known about the mechanisms by which B. cenocepacia causes disease, but chronic infection of the airways in CF patients may be associated, at least in part, with the ability of this bacterium to survive within epithelial cells and macrophages. Survival in macrophages occurs in a membrane-bound compartment that is distinct from the lysosome, suggesting that B. cenocepacia prevents phagolysosomal fusion. In a previous study, we employed signature-tagged mutagenesis and an agar bead model of chronic pulmonary infection in rats to identify B. cenocepacia genes that are required for bacterial survival in vivo. One of the most significantly attenuated mutants had an insertion in the mgtC gene. Here, we show that mgtC is also needed for growth of B. cenocepacia in magnesium-depleted medium and for bacterial survival within murine macrophages. Using fluorescence microscopy, we demonstrated that B. cenocepacia mgtC mutants, unlike the parental isolate, colocalize with the fluorescent acidotropic probe LysoTracker Red. At 4 h postinfection, mgtC mutants expressing monomeric red fluorescent protein cannot retain this protein within the bacterial cytoplasm. Together, these results demonstrate that, unlike the parental strain, an mgtC mutant does not induce a delay in phagolysosomal fusion and the bacterium-containing vacuoles are rapidly targeted to the lysosome, where bacteria are destroyed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Strains of the Burkholderia cepacia complex (Bcc) are opportunistic bacteria that can cause life-threatening infections in patients with cystic fibrosis and chronic granulomatous disease. Previous work has shown that Bcc isolates can persist in membrane-bound vacuoles within amoeba and macrophages without bacterial replication, but the detailed mechanism of bacterial persistence is unknown. In this study, we have investigated the survival of the Burkholderia cenocepacia strain J2315 within RAW264.7 murine macrophages. Strain J2315 is a prototypic isolate of the widespread and transmissible ET12 clone. Unlike heat-inactivated bacteria, which reach lysosomes shortly after internalization, vacuoles containing live B. cenocepacia J2315 accumulate the late endosome/lysosome marker LAMP-1 and start fusing with lysosomal compartments only after 6 h post internalization. Using fluorescent fluid-phase probes, we also demonstrated that B. cenocepacia-containing vacuoles continued to interact with newly formed endosomes, and maintained a luminal pH of 6.4 +/- 0.12. In contrast, vacuoles containing heat-inactivated bacteria had an average pH of 4.8 +/- 0.03 and rapidly merged with lysosomes. Additional experiments using concanamycin A, a specific inhibitor of the vacuolar H+-ATPase, revealed that vacuoles containing live bacteria did not exclude the H+-ATPase. This mode of bacterial survival did not require type III secretion, as no differences were found between wild type and a type III secretion mutant strain. Collectively, our results suggest that intracellular B. cenocepacia cause a delay in the maturation of the phagosome, which may contribute to facilitate bacterial escape from the microbicidal activities of the host cell.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Burkholderia cenocepacia is an important opportunistic pathogen of patients with cystic fibrosis. This bacterium is inherently resistant to a wide range of antimicrobial agents, including high concentrations of antimicrobial peptides. We hypothesized that the lipopolysaccharide (LPS) of B. cenocepacia is important for both virulence and resistance to antimicrobial peptides. We identified hldA and hldD genes in B. cenocepacia strain K56-2. These two genes encode enzymes involved in the modification of heptose sugars prior to their incorporation into the LPS core oligosaccharide. We constructed a mutant, SAL1, which was defective in expression of both hldA and hldD, and by performing complementation studies we confirmed that the functions encoded by both of these B. cenocepacia genes were needed for synthesis of a complete LPS core oligosaccharide. The LPS produced by SAL1 consisted of a short lipid A-core oligosaccharide and was devoid of O antigen. SAL1 was sensitive to the antimicrobial peptides polymyxin B, melittin, and human neutrophil peptide 1. In contrast, another B. cenocepacia mutant strain that produced complete lipid A-core oligosaccharide but lacked polymeric O antigen was not sensitive to polymyxin B or melittin. As determined by the rat agar bead model of lung infection, the SAL1 mutant had a survival defect in vivo since it could not be recovered from the lungs of infected rats 14 days postinfection. Together, these data show that the B. cenocepacia LPS inner core oligosaccharide is needed for in vitro resistance to three structurally unrelated antimicrobial peptides and for in vivo survival in a rat model of chronic lung infection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Taxonomic studies of the past few years have shown that the Burkholderia cepacia complex, a heterogeneous group of B. cepacia-like organisms, consists of at least nine species. B. cepacia complex strains are ubiquitously distributed in nature and have been used for biocontrol, bioremediation, and plant growth promotion purposes. At the same time, B. cepacia complex strains have emerged as important opportunistic pathogens of humans, particularly those with cystic fibrosis. All B. cepacia complex species investigated thus far use quorum-sensing (QS) systems that rely on N-acylhomoserine lactone (AHL) signal molecules to express certain functions, including the production of extracellular proteases, swarming motility, biofilm formation, and pathogenicity, in a population-density-dependent manner. In this study we constructed a broad-host-range plasmid that allowed the heterologous expression of the Bacillus sp. strain 240B1 AiiA lactonase, which hydrolyzes the lactone ring of various AHL signal molecules, in all described B. cepacia complex species. We show that expression of AiiA abolished or greatly reduced the accumulation of AHL molecules in the culture supernatants of all tested B. cepacia complex strains. Phenotypic characterization of wild-type and transgenic strains revealed that protease production, swarming motility, biofilm formation, and Caenorhabditis elegans killing efficiency was regulated by AHL in the large majority of strains investigated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The opportunistic bacterium Burkholderia cenocepacia C5424 contains two catalase/peroxidase genes, katA and katB. To investigate the functions of these genes, katA and katB mutants were generated by targeted integration of suicide plasmids into the katA and katB genes. The catalase/peroxidase activity of the katA mutant was not affected as compared with that of the parental strain, while no catalase/peroxidase activity was detected in the katB mutant. However, the katA mutant displayed reduced resistance to hydrogen peroxide under iron limitation, while the katB mutant showed hypersensitivity to hydrogen peroxide, and reduced growth under all conditions tested. The katA mutant displayed reduced growth only in the presence of carbon sources that are metabolized through the tricarboxylic acid (TCA) cycle, as the growth defect was abrogated in cultures supplemented with glucose or glycerol. This phenotype was also correlated with a marked reduction in aconitase activity. In contrast, aconitase activity was not reduced in the katB mutant and parental strains. The authors conclude that the KatA protein is a specialized catalase/peroxidase that has a novel function by contributing to maintain the normal activity of the TCA cycle, while KatB is a classical catalase/peroxidase that plays a global role in cellular protection against oxidative stress.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Burkholderia cenocepacia is an opportunistic bacterium that infects patients with cystic fibrosis. B. cenocepacia strains J2315, K56-2, C5424, and BC7 belong to the ET12 epidemic clone, which is transmissible among patients. We have previously shown that transposon mutants with insertions within the O antigen cluster of strain K56-2 are attenuated for survival in a rat model of lung infection. From the genomic DNA sequence of the O antigen-deficient strain J2315, we have identified an O antigen lipopolysaccharide (LPS) biosynthesis gene cluster that has an IS402 interrupting a predicted glycosyltransferase gene. A comparison with the other clonal isolates revealed that only strain K56-2, which produced O antigen and displayed serum resistance, lacked the insertion element inserted within the putative glycosyltransferase gene. We cloned the uninterrupted gene and additional flanking sequences from K56-2 and conjugated this plasmid into strains J2315, C5424, and BC7. All the exconjugants recovered the ability to form LPS O antigen. We also determined that the structure of the strain K56-2 O antigen repeat, which was absent from the LPS of strain J2315, consisted of a trisaccharide unit made of rhamnose and two N-acetylgalactosamine residues. The complexity of the gene organization of the K56-2 O antigen cluster was also investigated by reverse transcription-PCR, revealing several transcriptional units, one of which also contains genes involved in lipid A-core oligosaccharide biosynthesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Burkholderia cepacia is an opportunistic respiratory pathogen in cystic fibrosis patients. One highly transmissible and virulent clone belonging to genomovar IIIa expresses pili with unique cable morphology, which enable the bacterium to bind cytokeratin 13 in epithelial cells. The cblA gene, encoding the major pilin subunit, is often used as a DNA marker to identify potentially virulent isolates. The authors have now cloned and sequenced four additional genes, cblB, cblC, cblD and cblS, in the pilus gene cluster. This work shows that the products of the first four genes of the cbl operon, cblA, cblB, cblC and cblD, are sufficient for pilus assembly on the bacterial surface. Deletion of cblB abrogated pilus assembly and compromised the stability of the CblA protein in the periplasm. In contrast, deletion of cblD resulted in no pili, but there was no effect on expression and stability of the CblA protein subunit. These results, together with protein sequence homologies, predicted structural analyses, and the presence of typical amino acid motifs, are consistent with the assignment of functional roles for CblB as a chaperone that stabilizes the major pilin subunit in the periplasm, and CblD as the initiator of pilus biogenesis. It is also shown that expression of Cbl pili in Escherichia coli is not sufficient to mediate the binding of bacteria to the epithelial cell receptor cytokeratin 13, and that B. cepacia still binds to cytokeratin 13 in the absence of Cbl pili, suggesting that additional bacterial components are required for effective binding.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Burkholderia cepacia complex comprises groups of genomovars (genotypically distinct strains with very similar phenotypes) that have emerged as important opportunistic pathogens in cystic fibrosis (CF) patients. The inflammatory response against bacteria in the airways of CF individuals is dominated by polymorphonuclear cells and involves the generation of oxidative stress, which leads to further inflammation and tissue damage. Bacterial catalase, catalase-peroxidase and superoxide dismutase activities may contribute to the survival of B. cepacia following exposure to reactive oxygen metabolites generated by host cells in response to infection. In the present study the authors investigated the production of catalase, peroxidase and SOD by isolates belonging to various genomovars of the B. cepacia complex. Production of both catalase and SOD was maximal during late stationary phase in almost all isolates examined. Native PAGE identified 13 catalase electrophoretotypes and two SOD electrophoretotypes (corresponding to an Fe-SOD class) in strains belonging to the six genomovars of the B. cepacia complex. Seven out of 11 strains displaying high-level survival after H(2)O(2) treatment in vitro had a bifunctional catalase/peroxidase, and included all the genomovar III strains examined. These isolates represent most of the epidemic isolates that are often associated with the cepacia syndrome. The majority of the isolates from all the genomovars were resistant to extracellular O(-)(2), while resistance to intracellularly generated O(-)(2)was highly variable and could not be correlated with the detected levels of SOD activity. Altogether the results suggest that resistance to toxic oxygen metabolites from extracellular sources may be a factor involved in the persistence of B. cepacia in the airways of CF individuals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Members of the taxonomically diverse Burkholderia cepacia complex have become a major health risk for patients with cystic fibrosis (CF). Although patient-to-patient transmission of B. cepacia strains has been well-documented, very little is known about possible vehicles of transmission and reservoirs for these micro-organisms. In this work, it is shown that strains of the B. cepacia complex can survive within different isolates of the genus Acanthamoeba. Trophozoites containing bacteria developed profuse cytoplasmic vacuolization. Vacuolization was not detected in trophozoites infected with live Escherichia coli or heat-killed B. cepacia, or by incubation of trophozoites with filter-sterilized culture supernatants, indicating that metabolically active intracellular bacteria are required for the formation of vacuoles. Experiments with two different B. cepacia strains and two different Acanthamoeba isolates revealed that bacteria display a low level of intracellular replication approximately 72-96 h following infection. In contrast, extracellular bacteria multiplied efficiently on by-products released by amoebae. The findings suggest that amoebae may be a reservoir for B. cepacia and possibly a vehicle for transmission of this opportunistic pathogen among CF patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Small molecule inhibitors of the zinc finger domain (ZFI) in the nucleocapsid protein (NCp7) of HIV-1 are potent inhibitors of HIV and SIV
replication and may have utility as topical products to prevent infection. Furthermore, intravaginal rings (IVRs) were developed as coitally-independent,
sustained release devices which could be used for administration of HIV microbicides. The aims of these studies were to demonstrate that IVRs sized for
macaques are practical and compatible with the current generation of thioester-based NCp7 inhibitors.

Methods: Non-medicated silicone elastomer vaginal rings of various sizes thought to be applicable for macaques were prepared and tested for vaginal fit in Pigtailed and Chinese Rhesus macaques. Macaques were monitored for 8 weeks for mucosal disruption by colposcopy and proinflammatory cytokine markers in cervical vaginal lavages (CVL) using Luminex bead-based technology. Three different ZFIs (compounds 52, 89 and 122, each derived from an N-substituted S-acyl-2-mercaptobenzamide thioester scaffold) were loaded at 50 mg into an optimal matrix-type ring design. In vitro continuous release studies were then conducted over 28 days and analyzed by HPLC. Rate of release was determined by linear regression analysis.

Results: Qualitative evaluation at the time of ring insertion suggested that the 25 mm ring provided optimal fit in both macaque species. All rings remained in
place during the study period (2 to 4 weeks), and the animals did not attempt to remove the rings. No tissue irritation was observed, and no signs of physical
discomfort were noted. Also, no significant induction of cervicovaginal proinflammatory markers was observed during the 8-week period during and following ring insertion. One Pigtailed macaque showed elevated IL-8 levels in the CVL during the period when the ring was in place; however, these levels were comparable to those observed in two control macaques. In vitro release of the ZFIs peaked at day 1 and then continually declined to near steady-state rates between 20-30 mcg/day. The percent release after 14 days was 2.9, 2.0 and 0.9 for ZFI 89, 52 and 122, respectively.

Conclusions: IVRs of 25mm diameter, determined to be the optimal size for macaques, were well tolerated and did not induce inflammation. Release of all ZFI compounds followed t 0.5 kinetics. These findings suggest that efficacy testing in primate models is warranted to fully evaluate the potential to prevent
transmission.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Proteins and humic acids are common constituents of waste water. Latex colloids (colloids) acted as surrogates for microorganisms in multiple pulse dynamic column experiments (MPEs) that permitted colloid mobility to be quantified before and after the injection of either BSA (a protein), or Suwannee River humic acid (SRHA).
At low OM coverage colloid breakthrough curves demonstrated both BSA and SRHA reduced colloid deposition rates, but did not affect colloid irreversible deposition mechanisms. By contrast, high levels of SRHA surface coverage not only further reduced the matrix’s ability to attenuate colloids, but also resulted in reversible adsorption of a significant fraction of colloids deposited. Modelling of colloid responses using random sequential adsorption modelling suggested that 1 microgram of SRHA had the same effect as the deposition of 5.90±0.14 x109 colloids; the model suggested that adsorption of the same mass of BSA was equivalent to the deposition of between 7.1x108 and 2.3x109 colloids.
Colloid responses in MPEs where BSA coverage of colloid deposition sites approached saturation demonstrated the sand matrix remained capable of adsorbing colloids. However, in contrast to responses observed in MPEs at low surface coverage, continued colloid injection showed that the sand’s attenuation capacity increased with time, i.e. colloid concentrations declined as more were deposited (filter ripening).
Importance: Study results highlight the contrasting responses that may arise due to the interactions between colloids and OM in porous media. Results not only underscore that colloids can interact differently with various forms of deposited OM, but also that a single type of OM may generate dramatically different responses depending on the degree of surface coverage. The MPE method provides a means of quantifying the influence of OM on microorganism mobility in porous media such as filter beds, which may be used for either drinking water treatment or waste water treatment. In the wider environment study findings have potential to allow more confident predictions of the mobility of sewage derived pathogens discharging to groundwater.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Approach:
In-situ passive gradient comparative artificial tracer testing, undertaken using solutes (Uranine and Iodide), Bacteria (E.coli and P.putida) and bacteriophage (H40/1), permitted comparison of the mobility of different sized microorganisms relative to solutes in the sand and gravel aquifer underlying Dornach, Germany.
Tracer breakthrough curves reveal that even though uranine initially arrived at observation wells at the same time as microbiological tracers, maximum relative concentrations were sometimes less than those of microbiological tracers, while solute breakthrough curves proved more disperse.
Monitoring uranine breakthrough with depth suggested tracers arrived in observation wells in discrete 0.5m-1m thick intervals, over the aquifer’s 12m saturated thickness. Nearby exposures of aquifer material suggested that the aquifer consisted of sandy gravels enveloping sequences of open framework (OW) gravel up to 1m thick. Detailed examination of OW units revealed that they contained lenses of silty sand up to 1m long x 30cm thick., while granulometric data suggested that the gravel was two to three orders of magnitude more permeable than the enveloping sandy gravel.
Solute and microorganism tracer responses could not be simulated using conventional advective-dispersive equation solutions employing the same velocity and dispersion terms. By contrast solute tracer responses, modelled using a dual porosity approach for fractured media (DP-1D) corresponded well to observed field data. Simulating microorganism responses using the same transport terms, but no dual porosity term, generated good model fits and explained the higher relative concentration of the bacteria, compared to the non-reactive solute, even with first order removal to account for lower RR. Geologically, model results indicate that the silty units within open framework gravels are accessible to solute tracers, but not to microorganisms.
Importance:
Results highlight the benefits of geological observations developing appropriate conceptual models of solute and micro organism transport and in developing suitable numerical approaches to quantifying microorganism mobility at scales appropriate for the development of groundwater supply (wellhead) protection zones.