244 resultados para Nmda Receptor
Resumo:
Background Interferon ? receptor 1 (IFN? R1) deficiency is a primary immunodeficiency with allelic dominant and recessive mutations characterised clinically by severe infections with mycobacteria. We aimed to compare the clinical features of recessive and dominant IFN?R1 deficiencies. Methods We obtained data from a large cohort of patients worldwide. We assessed these people by medical histories, records, and genetic and immunological studies. Data were abstracted onto a standard form. Findings We identified 22 patients with recessive complete IFN?R1 deficiency and 38 with dominant partial deficiency. BCG and environmental mycobacteria were the most frequent pathogens. In recessive patients, 17 (77%) had environmental mycobacterial disease and all nine BCG-vaccinated patients had BCG disease. In dominant patients, 30 (79%) had environmental mycobacterial disease and 11 (73%) of 15 BCG-vaccinated patients had BCG disease. Compared with dominant patients, those with recessive deficiency were younger at onset of first environmental mycobacterial disease (mean 3·1 years [SD 2·5] vs 13·4 years [14·3], p=0·001), had more mycobacterial disease episodes (19 vs 8 per 100 person-years of observation, p=0·0001), had more severe mycobacterial disease (mean number of organs infected by Mycobacterium avium complex 4·1 [SD 0·8] vs 2·0 [1·1], p=0·004), had shorter mean disease-free intervals (1·6 years [SD 1·4] vs 7·2 years [7·6], p
Resumo:
Background BRCA1-mutant breast tumors are typically estrogen receptor alpha (ER alpha) negative, whereas most sporadic tumors express wild-type BRCA1 and are ER alpha positive. We examined a possible mechanism for the observed ER alpha-negative phenotype of BRCA1-mutant tumors.
Methods We used a breast cancer disease-specific microarray to identify transcripts that were differentially expressed between paraffin-embedded samples of 17 BRCA1-mutant and 14 sporadic breast tumors. We measured the mRNA levels of estrogen receptor 1 (ESR1) ( the gene encoding ER alpha), which was differentially expressed in the tumor samples, by quantitative polymerase chain reaction. Regulation of ESR1 mRNA and ER alpha protein expression was assessed in human breast cancer HCC1937 cells that were stably reconstituted with wild-type BRCA1 expression construct and in human breast cancer T47D and MCF-7 cells transiently transfected with BRCA1-specific short-interfering RNA ( siRNA). Chromatin immunoprecipitation assays were performed to determine if BRCA1 binds the ESR1 promoter and to identify other interacting proteins. Sensitivity to the antiestrogen drug fulvestrant was examined in T47D and MCF-7 cells transfected with BRCA1-specific siRNA. All statistical tests were two-sided.
Results Mean ESR1 gene expression was 5.4-fold lower in BRCA1-mutant tumors than in sporadic tumors ( 95% confidence interval [CI]=2.6-fold to 40.1-fold, P =.0019). The transcription factor Oct-1 recruited BRCA1 to the ESR1 promoter, and both BRCA1 and Oct-1 were required for ER alpha expression. BRCA1-depleted breast cancer cells expressing exogenous ER alpha were more sensitive to fulvestrant than BRCA1-depleted cells transfected with empty vector ( T47D cells, the mean concentration of fulvestrant that inhibited the growth of 40% of the cells [IC40] for empty vector versus ER alpha: > 10(-5) versus 8.0 x 10(-9) M [ 95% CI=3.1x10(-10) to 3.2 x 10(-6) M]; MCF-7 cells, mean IC40 for empty vector versus ER alpha : > 10(-5) versus 4.9 x 10(-8) M [ 95% CI=2.0 x 10(-9) to 3.9 x 10(-6) M]).
Conclusions BRCA1 alters the response of breast cancer cells to antiestrogen therapy by directly modulating ER alpha expression.