268 resultados para Neural stimulation.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adult neural stem cells (aNSCs) derived from the subventricular zone of the brain show therapeutic effects in EAE, an animal model of the chronic inflammatory neurodegenerative disease MS; however, the beneficial effects are modest. One critical weakness of aNSC therapy may be an insufficient antiinflammatory effect. Here, we demonstrate that i.v. or i.c.v. injection of aNSCs engineered to secrete IL-10 (IL-10–aNSCs), a potent immunoregulatory cytokine, induced more profound functional and pathological recovery from ongoing EAE than that with control aNSCs. IL-10–aNSCs exhibited enhanced antiinflammatory effects in the periphery and inflammatory foci in the CNS compared with control aNSCs, more effectively reducing myelin damage, a hallmark of MS. When compared with mice treated with control aNSCs, those treated with IL-10–aNSCs demonstrated differentiation of transplanted cells into greater numbers of oligodendrocytes and neurons but fewer astrocytes, thus enhancing exogenous remyelination and neuron/axonal growth. Finally, IL-10–aNSCs converted a hostile environment to one supportive of neurons/oligodendrocytes, thereby promoting endogenous remyelination. Thus, aNSCs engineered to express IL-10 show enhanced ability to induce immune suppression, remyelination, and neuronal repair and may represent a novel approach that can substantially improve the efficacy of neural stem cell–based therapy in EAE/MS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims: Infection of the mouse central nervous system with wild type (WT) and vaccine strains of measles virus (MV) results in lack of clinical signs and limited antigen detection. It is considered that cell entry receptors for these viruses are not present on murine neural cells and infection is restricted at cell entry.

Methods: To examine this hypothesis, virus antigen and caspase 3 expression (for apoptosis) was compared in primary mixed, neural cell cultures infected in vitro or prepared from mice infected intracerebrally with WT, vaccine or rodent neuroadapted viruses. Viral RNA levels were examined in mouse brain by nested and real-time reverse transcriptase polymerase chain reaction.

Results: WT and vaccine strains were demonstrated for the first time to infect murine oligodendrocytes in addition to neurones despite a lack of the known MV cell receptors. Unexpectedly, the percentage of cells positive for viral antigen was higher for WT MV than neuroadapted virus in both in vitro and ex vivo cultures. In the latter the percentage of positive cells increased with time after mouse infection. Viral RNA (total and mRNA) was detected in brain for up to 20 days, while cultures were negative for caspase 3 in WT and vaccine virus infections.

Conclusions: WT and vaccine MV strains can use an endogenous cell entry receptor(s) or alternative virus uptake mechanism in murine neural cells. However, viral replication occurs at a low level and is associated with limited apoptosis. WT MV mouse infection may provide a model for the initial stages of persistent MV human central nervous system infections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dapivirine mucoadhesive gels and freeze-dried tablets were prepared using a 3 x 3 x 2 factorial design. An artificial neural network (ANN) with multi-layer perception was used to investigate the effect of hydroxypropyl-methylcellulose (HPMC): polyvinylpyrrolidone (PVP) ratio (XI), mucoadhesive concentration (X2) and delivery system (gel or freeze-dried mucoadhesive tablet, X3) on response variables; cumulative release of dapivirine at 24 h (Q(24)), mucoadhesive force (F-max) and zero-rate viscosity. Optimisation was performed by minimising the error between the experimental and predicted values of responses by ANN. The method was validated using check point analysis by preparing six formulations of gels and their corresponding freeze-dried tablets randomly selected from within the design space of contour plots. Experimental and predicted values of response variables were not significantly different (p > 0.05, two-sided paired t-test). For gels, Q(24) values were higher than their corresponding freeze-dried tablets. F-max values for freeze-dried tablets were significantly different (2-4 times greater, p > 0.05, two-sided paired t-test) compared to equivalent gets. Freeze-dried tablets having lower values for X1 and higher values for X2 components offered the best compromise between effective dapivirine release, mucoadhesion and viscosity such that increased vaginal residence time was likely to be achieved. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Artificial neural networks (ANNs) can be easily applied to short-term load forecasting (STLF) models for electric power distribution applications. However, they are not typically used in medium and long term load forecasting (MLTLF) electric power models because of the difficulties associated with collecting and processing the necessary data. Virtual instrument (VI) techniques can be applied to electric power load forecasting but this is rarely reported in the literature. In this paper, we investigate the modelling and design of a VI for short, medium and long term load forecasting using ANNs. Three ANN models were built for STLF of electric power. These networks were trained using historical load data and also considering weather data which is known to have a significant affect of the use of electric power (such as wind speed, precipitation, atmospheric pressure, temperature and humidity). In order to do this a V-shape temperature processing model is proposed. With regards MLTLF, a model was developed using radial basis function neural networks (RBFNN). Results indicate that the forecasting model based on the RBFNN has a high accuracy and stability. Finally, a virtual load forecaster which integrates the VI and the RBFNN is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates the center selection of multi-output radial basis function (RBF) networks, and a multi-output fast recursive algorithm (MFRA) is proposed. This method can not only reveal the significance of each candidate center based on the reduction in the trace of the error covariance matrix, but also can estimate the network weights simultaneously using a back substitution approach. The main contribution is that the center selection procedure and the weight estimation are performed within a well-defined regression context, leading to a significantly reduced computational complexity. The efficiency of the algorithm is confirmed by a computational complexity analysis, and simulation results demonstrate its effectiveness. (C) 2010 Elsevier B.V. All rights reserved.