103 resultados para N -Soliton Solution
Resumo:
This paper addresses the analytical solution of the mixed-mode bending (MMB) problem. The first published solutions used a load separation in pure mode I and mode II and were applied for a crack length less than the beam half-span, a <= L. In later publications, the same mode separation was used in deriving the analytical solution for crack lengths bigger than the beam half-span, a > L. In this paper it is shown that this mode separation is not valid when a > L and in some cases may lead to very erroneous results. The correct mode separation and the corresponding analytical solutions, when a > L, are presented. Results, of force vs. displacement and force vs. crack length graphs, obtained using the existing formulation and the corrected formulation are compared. A finite element solution, which does not use mode separation, is also presented
A pseudo-transient solution strategy for the analysis of delamination by means of interface elements
Resumo:
Recent efforts in the finite element modelling of delamination have concentrated on the development of cohesive interface elements. These are characterised by a bilinear constitutive law, where there is an initial high positive stiffness until a threshold stress level is reached, followed by a negative tangent stiffness representing softening (or damage evolution). Complete decohesion occurs when the amount of work done per unit area of crack surface is equal to a critical strain energy release rate. It is difficult to achieve a stable, oscillation-free solution beyond the onset of damage, using standard implicit quasi-static methods, unless a very refined mesh is used. In the present paper, a new solution strategy is proposed based on a pseudo-transient formulation and demonstrated through the modelling of a double cantilever beam undergoing Mode I delamination. A detailed analysis into the sensitivity of the user-defined parameters is also presented. Comparisons with other published solutions using a quasi-static formulation show that the pseudo-transient formulation gives improved accuracy and oscillation-free results with coarser meshes
Resumo:
Tea waste (TW) and Date pits (DP) were investigated for their potential to remove toxic Cr(VI) ions from aqueous solution. Investigations showed that the majority of the bound Cr(VI) ions were reduced to Cr(III) after biosorption at acidic conditions. The electrons for the reduction of Cr(VI) may have been donated from the TW and DP biomasses. The experimental data obtained for Cr(VI)-TW and Cr(VI)-DP at different solution temperatures indicate a multilayer type biosorption, which explains why the Sips isotherm accurately represents the experimental data obtained in this study. The Sips maximum biosorption capacities of Cr(VI) onto TW and DP were 5.768 and 3.199 mmol/g at 333 K, respectively, which is comparatively superior to most other low-cost biomaterials. Fourier transform infrared spectroscopic analysis of the metal loaded biosorbents confirmed the participation of -COOH, -NH and O-CH groups in the reduction and complexation of chromium. Thermodynamic parameters demonstrated that the biosorption of Cr(VI) onto TW and DP biomass was endothermic, spontaneous and feasible at 303-333 K. The results evidently indicated that tea waste and date pits would be suitable biosorbents for Cr(VI) in wastewater under specific conditions.
Resumo:
The transport properties (adsorption and aggregation behavior) of virus-like particles (VLPs) of two strains of norovirus ("Norwalk" GI.1 and "Houston" GII.4) were studied in a variety of solution chemistries. GI.1 and GII.4 VLPs were found to be stable against aggregation at pH 4.0-8.0. At pH 9.0, GI.1 VLPs rapidly disintegrated. The attachment efficiencies (a) of GI.1 and GII.4 VLPs to silica increased with increasing ionic strength in NaCl solutions at pH 8.0. The attachment efficiency of GI.1 VLPs decreased as pH was increased above the isoelectric point (pH 5.0), whereas at and below the isoelectric point, the attachment efficiency was erratic. Ca(2+) and Mg(2+) dramatically increased the attachment efficiencies of GI.1 and GII.4 VLPs, which may be due to specific interactions with the VLP capsids. Bicarbonate decreased attachment efficiencies for both GI.1 and GII.4 VLPs, whereas phosphate decreased the attachment efficiency of GI.1, while increasing GII.4 attachment efficiency. The observed differences in GI.1 and GII.4 VLP attachment efficiencies in response to solution chemistry may be attributed to differential responses of the unique arrangement of exposed amino acid residues on the capsid surface of each VLP strain.
Resumo:
The bioavailability of soil arsenic (As) is determined by its speciation in soil solution, i.e., arsenite [As(III)] or arsenate [As(V)]. Soil bioavailability studies require suitable methods to cope with small volumes of soil solution that can be speciated directly after sampling, and thereby minimise any As speciation change during sample collection. In this study, we tested a self-made microcartridge to separate both As species and compared it to a commercially available cartridge. In addition, the diffusive gradient in thin films technique (DGT), in combination with the microcartridges, was applied to synthetic solutions and to a soil spiked with As. This combination was used to improve the assessment of available inorganic As species with ferrihydrite(FH)-DGT, in order to validate the technique for environmental analysis, mainly in soils. The self-made microcartridge was effective in separating As(III) from As(V) in solution with detection by inductively coupled plasma optical emission spectrometry (ICP-OES) in volumes of only 3 ml. The DGT study also showed that the FH-based binding gels are effective for As(III) and As(V) assessment, in solutions with As and P concentrations and ionic strength commonly found in soils. The FH-DGT was tested on flooded and unflooded As spiked soils and recoveries of As(III) and As(V) were 85–104% of the total dissolved As. This study shows that the DGT with FH-based binding gel is robust for assessing inorganic species of As in soils.
Resumo:
A simple, non-seeding and high-yield synthesis of convex gold octahedra with size of ca. 50 nm in aqueous solution is described. The octahedral nanoparticles were systematically prepared by reduction of HAuCl4 using ascorbic acid (AA) in the presence of cetyltrimethylammonium bromide (CTAB) as the stabilizing surfactant while concentrations of Au3+ were fixed. The synthesizing process is especially different to other wet synthesis of metallic nanoparticles because it is mediated by H2O2. Mechanism of the H2O2 – mediated process will be described in details. The gold octahedra were shown to be single crystals with all 8 faces belonging to {111} family. Moreover, the single crystalline particles also showed attractive optical properties towards LSPR that should find uses as labels for microscopic imaging, materials for colorimetric biosensings, or nanosensor developments.
Resumo:
In the present study the tensile and super-elastic behaviours of laser-welded NiTi wires in Hanks’ solution at open-circuit potential (OCP) were investigated using tensile and cyclic slow-strain-rate tests (SSRT). In comparison with NiTi weldment tested in oil (non-corrosive environment), the weldment in Hanks’ solution suffered from obvious degradation in the tensile properties as evidenced by lower tensile strength, reduced maximum elongation, and a brittle fracture mode. Moreover, a larger residual strain was observed in the weldment after stress–strain cycles in Hanks’ solution. In addition to the microstructural defects resulting from the welding process, the inferior tensile and super-elastic behaviours of the NiTi weldment in Hanks’ solution could be attributed to the trapping of a large amount of hydrogen in the weld zone and heat-affected zone.
Resumo:
In this study, the susceptibility to stress corrosion cracking (SCC) of laser-welded NiTi wires in Hanks’ solution at 37.5 °C was studied by the slow strain-rate test (SSRT) at open-circuit potential and at different applied anodic potentials. The weldment shows high susceptibility to SCC when the applied potential is near to the pitting potential of the heat-affected zone (HAZ). The pits formed in the HAZ become sites of crack initiation when stress is applied, and cracks propagate in an intergranular mode under the combined effect of corrosion and stress. In contrast, the base-metal is immune to SCC under similar conditions. The increase in susceptibility to SCC in the weldment could be attributed to the poor corrosion resistance in the coarse-grained HAZ.