98 resultados para Multidimensional. Development. Convergence. Divergence. Analysis of groupings
Resumo:
One of the major challenges in systems biology is to understand the complex responses of a biological system to external perturbations or internal signalling depending on its biological conditions. Genome-wide transcriptomic profiling of cellular systems under various chemical perturbations allows the manifestation of certain features of the chemicals through their transcriptomic expression profiles. The insights obtained may help to establish the connections between human diseases, associated genes and therapeutic drugs. The main objective of this study was to systematically analyse cellular gene expression data under various drug treatments to elucidate drug-feature specific transcriptomic signatures. We first extracted drug-related information (drug features) from the collected textual description of DrugBank entries using text-mining techniques. A novel statistical method employing orthogonal least square learning was proposed to obtain drug-feature-specific signatures by integrating gene expression with DrugBank data. To obtain robust signatures from noisy input datasets, a stringent ensemble approach was applied with the combination of three techniques: resampling, leave-one-out cross validation, and aggregation. The validation experiments showed that the proposed method has the capacity of extracting biologically meaningful drug-feature-specific gene expression signatures. It was also shown that most of signature genes are connected with common hub genes by regulatory network analysis. The common hub genes were further shown to be related to general drug metabolism by Gene Ontology analysis. Each set of genes has relatively few interactions with other sets, indicating the modular nature of each signature and its drug-feature-specificity. Based on Gene Ontology analysis, we also found that each set of drug feature (DF)-specific genes were indeed enriched in biological processes related to the drug feature. The results of these experiments demonstrated the pot- ntial of the method for predicting certain features of new drugs using their transcriptomic profiles, providing a useful methodological framework and a valuable resource for drug development and characterization.
Resumo:
The Arc-Length Method is a solution procedure that enables a generic non-linear problem to pass limit points. Some examples are provided of mode-jumping problems solutions using a commercial nite element package, and other investigations are carried out on a simple structure of which the numerical solution can be compared with an analytical one. It is shown that Arc-Length Method is not reliable when bifurcations are present in the primary equilibrium path; also the presence of very sharp snap-backs or special boundary conditions may cause convergence diÆculty at limit points. An improvement to the predictor used in the incremental procedure is suggested, together with a reliable criteria for selecting either solution of the quadratic arc-length constraint. The gap that is sometimes observed between the experimantal load level of mode-jumping and its arc-length prediction is explained through an example.
Resumo:
Cyber-security research in the field of smart grids is often performed with a focus on either the power and control domain or the Information and Communications Technology (ICT) domain. The characteristics of the power equipment or ICT domain are commonly not collectively considered. This work provides an analysis of the physical effects of cyber-attacks on microgrids – a smart grid construct that allows continued power supply when disconnected from a main grid. Different types of microgrid operations are explained (connected, islanded and synchronous-islanding) and potential cyber-attacks and their physical effects are analyzed. A testbed that is based on physical power and ICT equipment is presented to validate the results in both the physical and ICT domain.
Resumo:
This paper revisits work on the socio-political amplification of risk, which predicts that those living in developing countries are exposed to greater risk than residents of developed nations. This prediction contrasts with the neoliberal expectation that market driven improvements in working conditions within industrialising/developing nations will lead to global convergence of hazard exposure levels. It also contradicts the assumption of risk society theorists that there will be an ubiquitous increase in risk exposure across the globe, which will primarily affect technically more advanced countries. Reviewing qualitative evidence on the impact of structural adjustment reforms in industrialising countries, the export of waste and hazardous waste recycling to these countries and new patterns of domestic industrialisation, the paper suggests that workers in industrialising countries continue to face far greater levels of hazard exposure than those of developed countries. This view is confirmed when a data set including 105 major multi-fatality industrial disasters from 1971 to 2000 is examined. The paper concludes that there is empirical support for the predictions of socio-political amplification of risk theory, which finds clear expression in the data in a consistent pattern of significantly greater fatality rates per industrial incident in industrialising/developing countries.
Resumo:
Recently there has been an increasing interest in the development of new methods using Pareto optimality to deal with multi-objective criteria (for example, accuracy and architectural complexity). Once one has learned a model based on their devised method, the problem is then how to compare it with the state of art. In machine learning, algorithms are typically evaluated by comparing their performance on different data sets by means of statistical tests. Unfortunately, the standard tests used for this purpose are not able to jointly consider performance measures. The aim of this paper is to resolve this issue by developing statistical procedures that are able to account for multiple competing measures at the same time. In particular, we develop two tests: a frequentist procedure based on the generalized likelihood-ratio test and a Bayesian procedure based on a multinomial-Dirichlet conjugate model. We further extend them by discovering conditional independences among measures to reduce the number of parameter of such models, as usually the number of studied cases is very reduced in such comparisons. Real data from a comparison among general purpose classifiers is used to show a practical application of our tests.
Resumo:
Wind energy projects face increasing opposition from host communities throughout the western world. Governments have responded in a range of ways, including enhanced local control over consenting (England), reform of planning regulations (Australia) or community ownership (Denmark). However, there is no effective mechanism for monitoring levels of social acceptance and thus, no means of evaluating the effectiveness of these approaches. There have been attempts to understand how social framing of wind energy in the media (e.g. Van de Velde et al 2010, Barry and Ellis, 2008, Hindmarsh 2014), highlighting how this changes over time. However, no research has focussed on Ireland and critically, none have examined whether this can help monitor overall levels of social acceptance. In order to explore this, this paper will present a media analysis of wind energy in the Republic of Ireland, which witnessed a rapid increase in wind energy capacity and has the highest energy penetration of wind in the world (19%). However, this has been accompanied by increasing public opposition and (assumed) declining levels of social acceptance.
This paper will describe the results of analysing over 8000 articles on wind energy that have appeared in three Irish newspapers. These are assessed through historical-diachronic (over time) and comparative –synchronic (differences between newspapers) analyses (Carvalho 2007) to highlight changing trends in framing wind energy and changing concerns over wind energy in Ireland. The paper will consider whether such media analysis could form a tool for monitoring the trends in social acceptance of wind energy.
Resumo:
BACKGROUND: Smoking is the most important individual risk factor for many cancer sites but its association with breast and prostate cancer is not entirely clear. Rate advancement periods (RAPs) may enhance communication of smoking related risk to the general population. Thus, we estimated RAPs for the association of smoking exposure (smoking status, time since smoking cessation, smoking intensity, and duration) with total and site-specific (lung, breast, colorectal, prostate, gastric, head and neck, and pancreatic) cancer incidence and mortality.
METHODS: This is a meta-analysis of 19 population-based prospective cohort studies with individual participant data for 897,021 European and American adults. For each cohort we calculated hazard ratios (HRs) for the association of smoking exposure with cancer outcomes using Cox regression adjusted for a common set of the most important potential confounding variables. RAPs (in years) were calculated as the ratio of the logarithms of the HRs for a given smoking exposure variable and age. Meta-analyses were employed to summarize cohort-specific HRs and RAPs.
RESULTS: Overall, 140,205 subjects had a first incident cancer, and 53,164 died from cancer, during an average follow-up of 12 years. Current smoking advanced the overall risk of developing and dying from cancer by eight and ten years, respectively, compared with never smokers. The greatest advancements in cancer risk and mortality were seen for lung cancer and the least for breast cancer. Smoking cessation was statistically significantly associated with delays in the risk of cancer development and mortality compared with continued smoking.
CONCLUSIONS: This investigation shows that smoking, even among older adults, considerably advances, and cessation delays, the risk of developing and dying from cancer. These findings may be helpful in more effectively communicating the harmful effects of smoking and the beneficial effect of smoking cessation.
Resumo:
Urothelial cancer (UC) is highly recurrent and can progress from non-invasive (NMIUC) to a more aggressive muscle-invasive (MIUC) subtype that invades the muscle tissue layer of the bladder. We present a proof of principle study that network-based features of gene pairs can be used to improve classifier performance and the functional analysis of urothelial cancer gene expression data. In the first step of our procedure each individual sample of a UC gene expression dataset is inflated by gene pair expression ratios that are defined based on a given network structure. In the second step an elastic net feature selection procedure for network-based signatures is applied to discriminate between NMIUC and MIUC samples. We performed a repeated random subsampling cross validation in three independent datasets. The network signatures were characterized by a functional enrichment analysis and studied for the enrichment of known cancer genes. We observed that the network-based gene signatures from meta collections of proteinprotein interaction (PPI) databases such as CPDB and the PPI databases HPRD and BioGrid improved the classification performance compared to single gene based signatures. The network based signatures that were derived from PPI databases showed a prominent enrichment of cancer genes (e.g., TP53, TRIM27 and HNRNPA2Bl). We provide a novel integrative approach for large-scale gene expression analysis for the identification and development of novel diagnostical targets in bladder cancer. Further, our method allowed to link cancer gene associations to network-based expression signatures that are not observed in gene-based expression signatures.