166 resultados para Morris Janowitz
Resumo:
This study explored the pattern of memory functioning in 58 patients with chronic schizophrenia and compared their performance with 53 normal controls. Multiple domains of memory were assessed, including verbal and nonverbal memory span, verbal and non-verbal paired associate learning, verbal and visual long-term memory, spatial and non-spatial conditional associative learning, recognition memory and memory for temporal order. Consistent with previous studies, substantial deficits in long-term memory were observed, with relative preservation of memory span. Memory for temporal order and recognition memory was intact, although significant deficits were observed on the conditional associative learning tasks. There was no evidence of lateralized memory impairment. In these respects, the pattern of memory impairment in schizophrenia is more similar in nature to that found in patients with memory dysfunction following mesiotemporal lobe lesions, rather than that associated with focal frontal lobe damage. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Objective: The Schizophrenia Psychiatric Genome-wide Association (GWAS) Consortium recently reported on five novel schizophrenia susceptibility loci. The most significant finding mapped to a micro-RNA, MIR-137, which may be involved in regulating the function of other schizophrenia and bipolar disorder susceptibility genes. Method: We genotyped 821 patients with confirmed DSM-IV diagnoses of schizophrenia, bipolar affective disorder I and schizoaffective disorder for the risk SNP (rs1625579) and investigated the clinical profiles of risk allele carriers using a within-case design. We also assessed neurocognitive performance in a subset of cases (n=399) and controls (n=171). Results: Carriers of the risk allele had lower scores for an OPCRIT-derived positive symptom factor (p=0.04) and lower scores on a lifetime measure of psychosis incongruity (p=0.017). Risk allele carriers also had more cognitive deficits involving episodic memory and attentional control. Conclusion: This is the first evidence that the MIR-137 risk variant may be associated with a specific subgroup of psychosis patients. Although the effect of this single SNP was not clinically relevant, investigation of the impact of carrying multiple risk SNPs in the MIR-137 regulatory network on diagnosis and illness profile may be warranted. © 2012 Elsevier Ireland Ltd.
Resumo:
Aging has been shown to be accompanied by various changes in the lymphocyte subset distribution in the elderly. We have investigated more fully, and in a large number of subjects, age-related changes within several subpopulations bearing natural killer (NK) cell-associated surface antigens and changes in several cytokines involved in NK cell expansion. A total of 229 healthy subjects from all decades of life from 20 to 98 years of age was included in this cross-sectional study. A significant increase with age was found in both the absolute counts and the proportions of CD3-CD(16+56)+, CD3+CD(16+56)+, CD57+CD8+, CD57+CD8(low)+, and CD57+CD8- cells, whereas the CD57+CD8(high)+ subset, which may represent the cytolytic T cell population more precisely, showed less change with age. Some evidence is also provided to suggest that these expanded NK cell populations are in an activated state. Soluble IL-2 receptor levels were also found to increase significantly with age and correlated with certain NK cell subsets. Although the functions of some of these subsets remain to be elucidated, their expansion in the elderly may represent a remodeling of the immune system with increasing age, with an increase in non-MHC-restricted cells perhaps compensating for the previously reported decline in T and B cells in the elderly. Alternatively, increased numbers of these cells may be a direct result of cytokine dysregulation or increased antigenic or neoplastic cell challenge.
Resumo:
In this study, the changes in some of the cellular components of the immune system and the activity of the cytokine interleukin 2, important for immune activation and lymphocyte proliferation, were measured in a large cross-sectional study of all age groups including octogenarian and nonagenarian subjects. In 206 apparently well community-living subjects, the absolute lymphocyte count and T and B cell numbers fell a little in old and very old subjects. Within the T cell compartment, helper/inducer CD4+ T cells, together with their subsets identified as 'naive' (CD4+/CD45RA+) and 'memory' (CD4+/CD45RO+) cells, also showed a decline with increased age. The suppressor/cytotoxic CD8+ subset showed no age-related change. The levels of the cytokine interleukin 2 were very low in octogenarian and nonagenarian subjects, while the soluble interleukin 2 receptor levels increased with increasing age. The interleukin 2 levels were associated with number and percentage of the 'memory' (CD4+/CD45RO+) subset of T cells which mediates the host response to previously met antigens. Since the interleukin 2 values were very low in the oldest groups and were associated with a reduced 'memory' (CD4+/CD45RO+) compartment, this suggests a possible mechanism of why the very elderly subject is more susceptible to morbidity and mortality from infectious or other agents.
Resumo:
The document draws largely on the results of research carried out by Hugh McNally and Dominic Morris of McNally Morris Architects and Keith McAllister of Queen’s University Belfast between 2012 and 2013. The objective of the study was to obtain a greater understanding of the impact that architecture and the built environment can have on people with autism spectrum disorder (ASD). The investigation into the subject centred on parents of young children with ASD in the belief that they are most likely to have an intimate knowledge of the issues that affect their children and are relatively well positioned to communicate those issues.
The study comprised a number of components.
- Focus Group Discussions with parents of children with ASD
- A Postal Questionnaire completed by parents of children with ASD
- A Comprehensive Desktop study of contemporary research into the relationship between ASD and aspects of the built environment.
Social stories are then used to help illustrate the world of a child with ASD to the reader and identify a series of potential difficulties for the pupil with ASD in a primary school setting. Design considerations and mitigating measures are then proposed for each difficulty.
The intention is that the document will raise awareness of some of the issues affecting primary school children with ASD and generate discourse among those whose task it is to provide an appropriate learning environment for all children. This includes teachers, health professionals, architects, parents, carers, school boards, government bodies and those with ASD themselves.
While this document uses the primary school as a lens through which to view some of the issues associated with ASD, it is the authors’ contention that the school can be seen as a “microcosm” for the wider world and that lessons taken from the learning environment can be applied elsewhere. The authors therefore hope that the document will help raise awareness of the myriad of issues for those with ASD that are embedded in the vast landscape of urban configurations and building types making up the spatial framework of our society.
Resumo:
Formed by linking metals or metal clusters through organic linkers, metal-organic frameworks are a class of solids with structural and chemical properties that mark them out as candidates for many emerging gas storage, separation, catalysis and biomedical applications. Important features of these materials include their high porosity and their flexibility in response to chemical or physical stimuli. Here, a copper-based metal-organic framework has been prepared in which the starting linker (benzene-1,3,5-tricarboxylic acid) undergoes selective monoesterification during synthesis to produce a solid with two different channel systems, lined by hydrophilic and hydrophobic surfaces, respectively. The material reacts differently to gases or vapours of dissimilar chemistry, some stimulating subtle framework flexibility or showing kinetic adsorption effects. Adsorption can be switched between the two channels by judicious choice of the conditions. The monoesterified linker is recoverable in quantitative yield, demonstrating possible uses of metal-organic frameworks in molecular synthetic chemistry as 'protecting groups' to accomplish selective transformations that are difficult using standard chemistry techniques.
Resumo:
Nitric oxide (NO) is important for the regulation of a number of diverse biological processes, including vascular tone, neurotransmission, inflammatory cell responsiveness, defence against invading pathogens and wound healing. Transition metal exchanged zeolites are nanoporous materials with high-capacity storage properties for gases such as NO. The NO stores are liberated upon contact with aqueous environments, thereby making them ideal candidates for use in biological and clinical settings. Here, we demonstrate the NO release capacity and powerful bactericidal properties of a novel NO-storing Zn2+-exchanged zeolite material at a 50 wt.% composition in a polytetrafluoroethylene polymer. Further to our published data showing the anti-thrombotic effects of a similar NO-loaded zeolite, this study demonstrates the antibacterial properties of NO-releasing zeolites against clinically relevant strains of bacteria, namely Gram-negative Pseudomonas aeruginosa and Gram-positive methicillin-sensitive and methicillin-resistant Staphylococcus aureus and Clostridium difficile. Thus our study highlights the potential of NO-loaded zeolites as biocompatible medical device coatings with anti-infective properties. (C) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
The flexibility of the metal-organic framework Cu-2(OH)(C8H3O7S)(H2O)center dot 2H(2)O (Cu-SIP-3) toward reversible single-crystal to single-crystal transformations is demonstrated using in situ diffraction methods at variable temperature. At temperatures below a dehydration-induced phase transition (T < 370 K) the structure is confirmed as being hydrated. In the temperature range where the transition takes place (370 K < T < 405 K) no discrete, sharp Bragg peaks can be seen in the single-crystal X-ray diffraction pattern, indicating significant loss of long-range order. At temperatures higher than 405 K, the Bragg peaks return and the structure can be refined as dehydrated Cu-SIP-3. The loss of guest water molecules can be followed at temperatures below the phase transition giving insight into the mechanism of the dehydration. Addition of nitric oxide gas to the material above the gating opening pressure of 275 mbar also leads to loss of Bragg scattering in the diffraction pattern.
Resumo:
Metal organic frameworks (MOFs) are among the most exciting materials discovered recently, attracting particular attention for their gas-adsorption and -storage properties. Certain MOFs show considerable structural flexibility in response to various stimuli. Although there are several examples of 'breathing' MOFs, in which structural changes occur without any bond breaking, examples of transformations in which several bonds are broken and made are much rarer. In this paper we demonstrate how a flexible MOF, Cu-2(OH)(C8H3O7S)(H2O)center dot 2H(2)O, can be synthesized by careful choice of the organic linker ligand. The flexibility can be controlled by addition of a supplementary coordinating molecule, which increases the thermal stability of the solid sufficiently for direct imaging with electron microscopy to be possible. We also demonstrate that the MOF shows unprecedented low-pressure selectivity towards nitric oxide through a coordination-driven gating mechanism. The chemical control over these behaviours offers new possibilities for the synthesis of MOFs with unusual and potentially exploitable properties.
Resumo:
Two porous metal organic frameworks (MOFs), [M-2(C8H2O6)(H2O)(2)] center dot 8H(2)O (M = Co, Ni), perform exceptionally well for the adsorption, storage, and water-triggered delivery of the biologically important gas nitric oxide. Adsorption and powder X-ray diffraction studies indicate that each coordinatively unsaturated metal atom in the structure coordinates to one NO molecule. All of the stored gas is available for delivery even after the material has been stored for several months. The combination of extremely high adsorption capacity (similar to 7 mmol of NO/g of MOF) and good storage stability is ideal for the preparation of NO storage solids. However, most important is that the entire reservoir of stored gas is recoverable on contact with a simple trigger (moisture). The activity of the NO storage materials is proved in myography experiments showing that the NO-releasing MOFs cause relaxation of porcine arterial tissue.
Resumo:
Transition metal-exchanged zeolite-A adsorbs and stores nitric oxide in relatively high capacity (up to 1 mmol of NO/g of zeolite). The stored NO is released on contact with an aqueous environment under biologically relevant conditions of temperature and pH. The release of the NO can be tuned by altering the chemical composition of the zeolite, by controlling the amount of water contacting the zeolite, and by blending the zeolite with different polymers. The high capacity of zeolite for NO makes it extremely attractive for use in biological and medical applications, and our experiments indicate that the NO released from Co-exchanged zeolite-A inhibits platelet aggregation and adhesion of human platelets in vitro.
Resumo:
Gas adsorption experiments have been carried out on a copper benzene tricarboxylate metal-organic framework material, HKUST-1. Hydrogen adsorption at 1 and 10 bar (both 77 K) gives an adsorption capacity of 11.16 mmol H-2 per g of HKUST-1 (22.7 mg g(-1), 2.27 wt %) at 1 bar and 18 mmol per g (36.28 mg g(-1), 3.6 wt %) at 10 bar. Adsorption of D-2 at 1 bar (77 K) is between 1.09 (at 1 bar) and 1.20(at < 100 mbar) times the H-2 values depending on the pressure, agreeing with the theoretical expectations. Gravimetric adsorption measurements of NO on HKUST-1 at 196 K (1 bar) gives a large adsorption capacity of similar to 9 mmol g(-1), which is significantly greater than any other adsorption capacity reported on a porous solid. At 298 K the adsorption capacity at 1 bar is just over 3 mmol g(-1). Infra red experiments show that the NO binds to the empty copper metal sites in HKUST-1. Chemiluminescence and platelet aggregometry experiments indicate that the amount of NO recovered on exposure of the resulting complex to water is enough to be biologically active, completely inhibiting platelet aggregation in platelet rich plasma.
Resumo:
Zeolites exchanged with transition metal cations Co2+, Mn2+, Zn2+ and Cu2+ are capable of storing and delivering a large quantity of nitric oxide in a range of 1.2-2.7 mmolg(-1). The metal ion exchange impacts the pore volumes of zeolite FAU more significantly than LTA. The storage of NO mainly involves coordination of NO to metal cation sites. By exposing zeolites to a moisture atmosphere, the stored nitric oxide can be released. The NO release takes more than 2 hours for the NO concentration decreasing below similar to 5ppb in outlet gas. Its release rate can be controlled by tailoring zeolite frameworks and optimising release conditions.
Resumo:
Metal organic frameworks (MOFs) are highly porous materials that can store significant amounts of gas, including nitric oxide. The chemical composition and toxicology of many (but not all) of these materials makes them potentially suitable for medical applications. In this paper, we will describe how triggered release methods can be used to deliver biologically relevant amounts of NO and then show how Ni, Co and Cu-containing MOFs are biologically active materials with potential applications in several different areas (anti-thrombosis, dermatology and wound healing, anti-bacterial, vasodilation etc.). We will also discuss the pros and cons of MOFs, including their chemical and biological stability and the toxicology of MOFs in general. (C) 2009 Elsevier Inc. All rights reserved.