164 resultados para Minimal Banach spaces
Resumo:
We prove that two dual operator spaces $X$ and $Y$ are stably isomorphic if and only if there exist completely isometric normal representations $phi$ and $psi$ of $X$ and $Y$, respectively, and ternary rings of operators $M_1, M_2$ such that $phi (X)= [M_2^*psi (Y)M_1]^{-w^*}$ and $psi (Y)=[M_2phi (X)M_1^*].$ We prove that this is equivalent to certain canonical dual operator algebras associated with the operator spaces being stably isomorphic. We apply these operator space results to prove that certain dual operator algebras are stably isomorphic if and only if they are isomorphic. We provide examples motivated by CSL algebra theory.
Resumo:
Hunter and Konieczny explored the relationships between measures of inconsistency for a belief base and the minimal inconsistent subsets of that belief base in several of their papers. In particular, an inconsistency value termed MIVC, defined from minimal inconsistent subsets, can be considered as a Shapley Inconsistency Value. Moreover, it can be axiomatized completely in terms of five simple axioms. MinInc, one of the five axioms, states that each minimal inconsistent set has the same amount of conflict. However, it conflicts with the intuition illustrated by the lottery paradox, which states that as the size of a minimal inconsistent belief base increases, the degree of inconsistency of that belief base becomes smaller. To address this, we present two kinds of revised inconsistency measures for a belief base from its minimal inconsistent subsets. Each of these measures considers the size of each minimal inconsistent subset as well as the number of minimal inconsistent subsets of a belief base. More specifically, we first present a vectorial measure to capture the inconsistency for a belief base, which is more discriminative than MIVC. Then we present a family of weighted inconsistency measures based on the vectorial inconsistency measure, which allow us to capture the inconsistency for a belief base in terms of a single numerical value as usual. We also show that each of the two kinds of revised inconsistency measures can be considered as a particular Shapley Inconsistency Value, and can be axiomatically characterized by the corresponding revised axioms presented in this paper.
Resumo:
The Irish border has been described as a ‘natural’ cultural divide between the island's two dominant indigenous ethno-national communities. However, an examination of key resources of ethno-national group culture - religion, sport and language - provides evidence to challenge this representation. Moreover, in the post-1994 period of conflict transformation, evidence is also presented to support the proposition that the Irish border region has developed into a cultural space in which Irish nationalist and Ulster unionist ethno-national communities can explore cultural differences and commonalities through cross-border, cross-community contact and communication in small group encounters. This space underpins the reconfiguration of the border from barrier to political bridge between North and South. European Union (EU) Peace programmes for Ireland, beginning in 1995, provided the support for a cross-border approach to escaping the cage of ethno-national conflict in Northern Ireland. However, post-2004 EU enlargement signalled the beginning of the end for EU Peace funding and severe economic recession has undermined the expectation of British-Irish intergovernmental intervention to support cross-border partnerships and their work. Therefore, the outlook for the sustainability of this cross-border cultural space is gloomy with potentially deleterious consequences for the continued reconfiguration of the border from barrier to bridge.
Resumo:
In this paper, we present new methods for constructing and analysing formulations of locally reacting surfaces that can be used in finite difference time domain (FDTD) simulations of acoustic spaces. Novel FDTD formulations of frequency-independent and simple frequency-dependent impedance boundaries are proposed for 2D and 3D acoustic systems, including a full treatment of corners and boundary edges. The proposed boundary formulations are designed for virtual acoustics applications using the standard leapfrog scheme based on a rectilinear grid, and apply to FDTD as well as Kirchhoff variable digital waveguide mesh (K-DWM) methods. In addition, new analytic evaluation methods that accurately predict the reflectance of numerical boundary formulations are proposed. numerical experiments and numerical boundary analysis (NBA) are analysed in time and frequency domains in terms of the pressure wave reflectance for different angles of incidence and various impedances. The results show that the proposed boundary formulations structurally adhere well to the theoretical reflectance. In particular, both reflectance magnitude and phase are closely approximated even at high angles of incidence and low impedances. Furthermore, excellent agreement was found between the numerical boundary analysis and the experimental results, validating both as tools for researching FDTD boundary formulations.
Resumo:
The context for this paper is a teacher education program for adult literacy practitioners at Queen’s University Belfast in Northern Ireland. This paper describes and reflects on the use of arts-based approaches to enhance these practitioners’ conceptualizations of literacy, presenting their arts-based responses and their evaluations of the methods and their contrasting definitions of literacy at the start and the end of the course. The discussion raises questions about the inclusion of visual literacy in adult literacy teacher education programmes.
Resumo:
A question central to modelling and, ultimately, managing food webs concerns the dimensionality of trophic niche space, that is, the number of independent traits relevant for determining consumer-resource links. Food-web topologies can often be interpreted by assuming resource traits to be specified by points along a line and each consumer's diet to be given by resources contained in an interval on this line. This phenomenon, called intervality, has been known for 30 years and is widely acknowledged to indicate that trophic niche space is close to one-dimensional. We show that the degrees of intervality observed in nature can be reproduced in arbitrary-dimensional trophic niche spaces, provided that the processes of evolutionary diversification and adaptation are taken into account. Contrary to expectations, intervality is least pronounced at intermediate dimensions and steadily improves towards lower- and higher-dimensional trophic niche spaces.
Resumo:
We give a complete description of those separable Banach lattices E with the property that every bounded linear from E into itself is the difference of two positive operators.
Resumo:
The purpose of the present paper is to lay the foundations for a systematic study of tensor products of operator systems. After giving an axiomatic definition of tensor products in this category, we examine in detail several particular examples of tensor products, including a minimal, maximal, maximal commuting, maximal injective and some asymmetric tensor products. We characterize these tensor products in terms of their universal properties and give descriptions of their positive cones. We also characterize the corresponding tensor products of operator spaces induced by a certain canonical inclusion of an operator space into an operator system. We examine notions of nuclearity for our tensor products which, on the category of C*-algebras, reduce to the classical notion. We exhibit an operator system S which is not completely order isomorphic to a C*-algebra yet has the property that for every C*-algebra A, the minimal and maximal tensor product of S and A are equal.