124 resultados para Messenger RNA


Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To assess the effects of advanced glycation endproduct (AGE) modification of vascular basement membrane (BM) on endothelin-1 (Et-1) induced intracellular [Ca2+] ([Ca2+]i) homeostasis and contraction in retinal microvascular pericytes (RMP). METHODS: RMPs were isolated from bovine retinal capillaries and propagated on AGE modified BM extract (AGE-BM) or non-modified native BM. Cytosolic Ca2+ was estimated using fura-2 microfluorimetry and cellular contraction determined by measurement of planimetric cell surface area. ETA receptor mRNA and protein expression was assessed by real time RT-PCR and western blotting, respectively. RESULTS: Exogenous endothelin-1 (Et-1) evoked rises in [Ca2+]i and contraction in RMPs were found to be mediated entirely through ETA receptor (ETAR) activation. Both peak and plateau phases of the Et-1 induced [Ca2+]i response and contraction were impaired in RMPs propagated on AGE modified BM. ETAR mRNA expression remained unchanged in RMPs exposed to native or AGE-BM, but protein expression for ETAR (66 kDa) was lower in the AGE exposed cells. CONCLUSIONS: These results suggest that substrate derived AGE crosslinks can influence RMP physiology by mechanisms which include disruption of ETA receptor signalling. AGE modification of vascular BMs may contribute to the retinal hemodynamic abnormalities observed during diabetes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recognition of microbial pathogens by the innate immune system involves Toll-like receptors (TLRs), which recognize pathogen-associated molecular patterns. Different TLRs recognize different pathogen-associated molecular patterns, with TLR-4 mediating the response to lipopolysaccharide from Gram-negative bacteria. All TLRs have a Toll/IL-1 receptor (TIR) domain, which is responsible for signal transduction. MyD88 is one such protein that contains a TIR domain. It acts as an adapter, being involved in TLR-2, TLR-4 and TLR-9 signalling; however, our understanding of how TLR-4 signals is incomplete. Here we describe a protein, Mal (MyD88-adapter-like), which joins MyD88 as a cytoplasmic TIR-domain-containing protein in the human genome. Mal activates NF-kappaB, Jun amino-terminal kinase and extracellular signal-regulated kinase-1 and -2. Mal can form homodimers and can also form heterodimers with MyD88. Activation of NF-kappaB by Mal requires IRAK-2, but not IRAK, whereas MyD88 requires both IRAKs. Mal associates with IRAK-2 by means of its TIR domain. A dominant negative form of Mal inhibits NF-kappaB, which is activated by TLR-4 or lipopolysaccharide, but it does not inhibit NF-kappaB activation by IL-1RI or IL-18R. Mal associates with TLR-4. Mal is therefore an adapter in TLR-4 signal transduction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To consider whether STZ-induced hyperglycemia renders rat retinal function and ocular blood flow more susceptible to acute intraocular pressure (IOP) challenge.

METHODS: Retinal function (electroretinogram, ERG) was measured during acute IOP challenge (10-100 mmHg, 5 mmHg increments, 3 min/step, vitreal cannulation) in adult Long-Evans rats (6-week old, citrate: n=6, STZ: n=10) 4 weeks after citrate buffer or streptozotocin (STZ, 65 mg/kg, blood glucose > 15 mmol/l) injection. At each IOP, dim and bright flash (-4.56, -1.72 log cd.s.m^-2) ERG responses were recorded to measure inner retinal and ON-bipolar cell function, respectively. Ocular blood flow (laser Doppler flowmetry, citrate; n=6, STZ; n=10) was also measured during acute IOP challenge. Retinae were isolated for qPCR analysis of nitric oxide synthase mRNA expression endothelial, eNos; inducible, iNos; neuronal, nNos).

RESULTS: STZ-induced diabetes increased the susceptibility of inner retinal (IOP at 50% response, 60.1, CI: 57.0-62.0 mmHg vs. citrate: 67.5, CI: 62.1-72.4 mmHg) and ON-bipolar cell function (STZ: 60.3, CI: 58.0-62.8 mmHg vs. citrate: 65.1, CI: 58.0-62.78 mmHg) and ocular blood flow (43.9, CI: 40.8-46.8 vs. citrate: 53.4, CI: 50.7-56.1 mmHg) to IOP challenge. Citrate eyes showed elevated eNos mRNA (+49.7%) after IOP stress, an effect not found in STZ-diabetic eyes (-5.7%, P<0.03). No difference was observed for iNos or nNos (P>0.05) following IOP elevation.

CONCLUSIONS: STZ-induced diabetes increased functional susceptibility during acute IOP challenge. This functional vulnerability is associated with a reduced capacity for diabetic eyes to upregulate eNOS expression and to autoregulate blood flow in response to stress.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Erythropoiesis is maintained by the hormone erythropoietin (Epo) binding to its cognate receptor (EpoR) on erythroid progenitor cells. The Epo-EpoR interaction initiates a signal transduction process that regulates the survival, growth and differentiation of these cells. Originally perceived as highly lineage-restricted, Epo is now recognised to have pleiotropic effects extending beyond the maintenance of red cell mass. Functional interactions between Epo and EpoR have been demonstrated in numerous cells and tissues. EpoR expression on neoplastic cells leads to concern that recombinant human erythropoietin, used to treat anaemia in cancer patients, may augment tumour growth. Here we demonstrate that EPO, at pharmacological concentrations, can activate three major signalling cascades, viz. the Jak2/STAT5, Ras/ERK and PI3K/Akt pathways in non-small cell lung carcinoma (NSCLC) cell lines. EpoR synthesis is normally under the control of GATA-1, but NSCLC cells exhibit decreased GATA-1 levels compared to GATA-2, -3 and -6, suggesting that GATA-1 is not essential for EpoR production. The increased Epo-induced signalling was not associated with a growth advantage for the NSCLC cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cytosolic phospholipase A2 (cPLA2) is thought to be the rate-limiting enzyme in the arachidonic acid/eicosanoid cascade. The ability of various agonists to increase steady-state cPLA2 mRNA levels has previously been reported. The current study delineates the contributions of transcriptional and post-transcriptional processes to the regulation of cPLA2 gene expression in response to a variety of agonists in cultured rat glomerular mesangial cells. Epidermal growth factor, platelet-derived growth factor, serum and phorbol myristate acetate all increase the half-life of cPLA2 mRNA transcripts, indicating a role for post-transcriptional modulation of gene expression. The presence of three ATTTA motifs in the 3' untranslated region (3'UTR) of the rat cPLA2 cDNA is ascertained. Heterologous expression of chimeric constructs with different 3'UTRs ligated into the 3' end of the luciferase coding region reveals that the presence of the cPLA2 3'UTR results in reduced luciferase activity compared with constructs without the cPLA2 3'UTR. Furthermore, the luciferase activity in the constructs with the cPLA2 3'UTR is increased in response to the same agonists which stabilize endogenous cPLA2 mRNA. A negligible effect of these agonists on transcriptional control of cPLA2 is evident using promoter-reporter constructs expressed in transient and stable transfectants. Taken together, these results indicate predominant post-transcriptional regulation of cPLA2 mRNA levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ribosome biogenesis is a fundamental cellular process tightly linked to cell growth and proliferation, which requires the coordinated transcription of all three nuclear polymerases. Synthesis of ribosomal RNA (rRNA) by RNA polymerase I (Pol I) has been suggested as a key regulator of ribosome biogenesis, and there is a strong link between transcription of ribosomal RNAs and cellular proliferation. This makes Pol I transcription a valid and attractive target for anticancer therapy. At the moment however there are only a small number of compounds that act as specific inhibitors of Pol I transcription and this makes it very difficult for the development of drugs which would target rRNA transcription and consequently ribosome biogenesis. Therefore, to aid in the development of new inhibitors of Pol I, high-throughput methods to monitor and detect changes in Pol I activity need to be developed. This current study aimed to address the question of whether or not quantitative PCR (qPCR) could be used to detect changes in rRNA production in cells under different conditions that repress Pol I activity i.e. serum starvation and drug treatment. Our results have shown that using primers and a hydrolysis probe designed for the 5’ETS region of the pre-rRNA molecule, rRNA levels in both treated and untreated cells could be determined by using qPCR.
Amplification resulted in formation of a single product and S1 nuclease protection assay confirmed the down-regulation of Pol I transcription. Following serum-starvation and drug treatment there was a dramatic reduction in the amount of 5’ETS transcript quantitated by both Sybr Green chemistry and the use of a fluorescently labelled hydrolysis probe. The optimization of the qPCR strategy will be discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Chronic kidney disease (CKD) patients on dialysis are prone to vitamin D insufficiency despite oral vitamin D supplementation. Here, we studied whether narrow-band ultraviolet B (NB-UVB) exposures improve vitamin D balance.

Methods: 14 haemodialysis patients and 15 healthy subjects receiving oral cholecalciferol 20 µg daily got nine NB-UVB exposures on the entire body. Serum 25-hydroxyvitamin D (25(OH)D) was measured by radioimmunoassay. Cutaneous mRNA expression levels of CYP27A1 and CYP27B1, two enzymes required for hydroxylation of vitamin D into its active metabolite, were also measured.

Results: The baseline serum 25(OH)D concentration was 57.6 ± 18.2 nmol/l in the CKD patients and 74.3 ± 14.8 nmol/l in the healthy subjects. The NB-UVB course increased serum 25(OH)D by 14.0 nmol/l (95% CI 8.7-19.5) and 17.0 nmol/l (CI 13.7-20.2), respectively. At baseline the CKD patients showed significantly increased CYP27B1 levels compared to the healthy subjects.

Conclusions: A short NB-UVB course is an efficient way to improve vitamin D balance in CKD patients on dialysis who are receiving oral vitamin D supplementation. The increased cutaneous CYP27B1 levels in the CKD patients suggest that the loss of renal activity of this enzyme is at least partially compensated for by the skin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A course of treatment with narrow-band ultraviolet B (NB-UVB) improves psoriasis and increases serum 25-hydroxyvitamin D (25(OH)D). In this study 12 patients with psoriasis who were supplemented with oral cholecalciferol, 20 µg daily, were given a course of NB-UVB and their response measured. At baseline, serum 25(OH)D was 74.14 ± 22.9 nmol/l. At the 9th exposure to NB-UVB 25(OH)D had increased by 13.2 nmol/l (95% confidence interval (95% CI) 7.2–18.4) and at the 18th exposure by 49.4 nmol/l (95% CI 35.9–64.6) above baseline. Psoriasis Area Severity Index score improved from 8.7 ± 3.5 to 4.5 ± 2.0 (p < 0.001). At baseline, psoriasis lesions showed low vitamin D metabolizing enzyme (CYP27A1, CYP27B1) and high human β-defensin-2 mRNA expression levels compared with those of the healthy subjects. In conclusion, NB-UVB treatment significantly increases serum 25(OH)D in patients with psoriasis who are taking oral vitamin D supplementation, and the concentrations remain far from the toxicity level. Healing psoriasis lesions show similar mRNA expression of vitamin D metabolizing enzymes, but higher antimicrobial peptide levels than NB-UVB-treated skin in healthy subjects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic kidney disease (CKD) patients are especially prone to vitamin D insufficiency. Narrow-band ultraviolet B (NB-UVB) treatment increases serum 25-hydroxyvitamin D [25(OH)D] in dermatological patients, and we studied whether it also improves vitamin D balance in CKD patients on haemodialysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Macrophage migration inhibitory factor (MIF), which inhibits apoptosis and promotes angiogenesis, is expressed in cancers suppressing immune surveillance. Its biological role in human glioblastoma is, however, only poorly understood. We examined in-vivo expression of MIF in 166 gliomas and 23 normal control brains by immunohistochemistry. MIF immunoreactivity was enhanced in neoplastic astrocytes in WHO grade II glioma and increased significantly in higher tumour grades (III-IV). MIF expression was further assessed in 12 glioma cell lines in vitro. Quantitative RT-PCR showed that MIF mRNA expression was elevated up to 800-fold in malignant glioma cells compared with normal brain. This translated into high protein levels as assessed by immunoblotting of total cell lysates and by ELISA-based measurement of secreted MIF. Wild-type p53-retaining glioma cell lines expressed higher levels of MIF, which may be connected with the previously described role of MIF as a negative regulator of wild-type p53 signalling in tumour cells. Stable knockdown of MIF by shRNA in glioma cells significantly increased tumour cell susceptibility towards NK cell-mediated cytotoxicity. Furthermore, supernatant from mock-transfected cells, but not from MIF knockdown cells, induced downregulation of the activating immune receptor NKG2D on NK and CD8+ T cells. We thus propose that human glioma cell-derived MIF contributes to the immune escape of malignant gliomas by counteracting NK and cytotoxic T-cell-mediated tumour immune surveillance. Considering its further cell-intrinsic and extrinsic tumour-promoting effects and the availability of small molecule inhibitors, MIF seems to be a promising candidate for future glioma therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Malignant tumors metabolize glucose to lactate even in the presence of oxygen (aerobic glycolysis). The metabolic switch from oxidative glycolysis to non-oxidative fermentation of glucose and proteins performed by the tumor cells seems to be associated with TKTL1 and pAkt overexpression. Therefore the aim of the present study was to investigate the expression of TKTL1 and pAkt in human specimens of endometrial cancer as compared to benign endometrium. Additionally, expression of the glucose transporter GLUT1 was also investigated as aerobic glycolysis is associated with an increased need for glucose.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although trastuzumab (Herceptin) has substantially improved the overall survival of patients with mammary carcinomas, even initially well-responding tumors often become resistant. Because natural killer (NK) cell-mediated antibody-dependent cell-mediated cytotoxicity (ADCC) is thought to contribute to the therapeutic effects of trastuzumab, we have established a cell culture system to select for ADCC-resistant SK-OV-3 ovarian cancer and MCF7 mammary carcinoma cells. Ovarian cancer cells down-regulated HER2 expression, resulting in a more resistant phenotype. MCF7 breast cancer cells, however, failed to develop resistance in vitro. Instead, treatment with trastuzumab and polyclonal NK cells resulted in the preferential survival of individual sphere-forming cells that displayed a CD44(high)CD24(low) "cancer stem cell-like" phenotype and expressed significantly less HER2 compared with non-stem cells. Likewise, the CD44(high)CD24(low) population was also found to be more immunoresistant in SK-BR3, MDA-MB231, and BT474 breast cancer cell lines. When immunoselected MCF7 cells were then re-expanded, they mostly lost the observed phenotype to regenerate a tumor cell culture that displayed the initial HER2 surface expression and ADCC-susceptibility, but was enriched in CD44(high)CD24(low) cancer stem cells. This translated into increased clonogenicity in vitro and tumorigenicity in vivo. Thus, we provide evidence that the induction of ADCC by trastuzumab and NK cells may spare the actual tumor-initiating cells, which could explain clinical relapse and progress. Moreover, our observation that the "relapsed" in vitro cultures show practically identical HER2 surface expression and susceptibility toward ADCC suggests that the administration of trastuzumab beyond relapse might be considered, especially when combined with an immune-stimulatory treatment that targets the escape variants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cathelicidin is an antimicrobial peptide (AMP) and signaling molecule in innate immunity and a direct target of 1,25-dihydroxyvitamin D3 (1,25D3) in primary human keratinocytes (NHEK). The expression of cathelicidin is dysregulated in various skin diseases and its regulation differs depending on the epithelial cell type. The secondary bile acid lithocholic acid (LCA) is a ligand of the vitamin D receptor (VDR) and can carry out in vivo functions of vitamin D3. Therefore we analyzed cathelicidin mRNA- and peptide expression levels in NHEK and colonic epithelial cells (Caco-2) after stimulation with LCA. We found increased expression of cathelicidin mRNA and peptide in NHEK, in Caco-2 colon cells no effect was observed after LCA stimulation. The VDR as well as MEK-ERK signaled the upregulation of cathelicidin in NHEK induced by LCA. Collectively, our data indicate that cathelicidin induction upon LCA treatment differs in keratinocytes and colonic epithelial cells. Based on these observations LCA-like molecules targeting cathelicidin could be designed for the treatment of cutaneous diseases that are characterized by disturbed cathelicidin expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The particular microenvironment of the skeletal muscle can be the site of complex immune reactions. Toll-like receptors (TLRs) mediate inflammatory stimuli from pathogens and endogenous danger signals and link the innate and adaptive immune system. We investigated innate immune responses in human muscle. Analyzing TLR1-9 mRNA in cultured myoblasts and rhabdomyosarcoma cells, we found constitutive expression of TLR3. The TLR3 ligand Poly (I:C), a synthetic analog of dsRNA, and IFN-gamma increased TLR3 levels. TLR3 was mainly localized intracellularly and regulated at the protein level. Poly (I:C) challenge 1) activated nuclear factor-kappaB (NF-kappaB), 2) increased IL-8 release, and 3) up-regulated NKG2D ligands and NK-cell-mediated lysis of muscle cells. We examined muscle biopsy specimens of 6 HIV patients with inclusion body myositis/polymyositis (IBM/PM), 7 cases of sporadic IBM and 9 nonmyopathic controls for TLR3 expression. TLR3 mRNA levels were elevated in biopsy specimens from patients with IBM and HIV-myopathies. Muscle fibers in inflammatory myopathies expressed TLR3 in close proximity of infiltrating mononuclear cells. Taken together, our study suggests an important role of TLR3 in the immunobiology of muscle, and has substantial implications for the understanding of the pathogenesis of inflammatory myopathies or therapeutic interventions like vaccinations or gene transfer.