297 resultados para Medical errors
Resumo:
Silicone elastomer systems have been shown to offer potential for the fabrication of medical devices and sustained release drug delivery devices comprising low molecular weight drugs and protein therapeutics. For drug delivery systems in particular, there is often no clear rationale for selection of the silicone elastomer grade, particularly in respect of optimizing the manufacturing conditions to ensure thermal stability of the active agent and short cycle times. In this study, the cure characteristics of a range of addition-cure and condensation-cure, low-consistency, implant-grade silicone elastomers, either as supplied or loaded with the model protein bovine serum albumin (BSA) and the model hydrophilic excipient glycine, were investigated using oscillatory rheology with a view to better understanding the isothermal cure characteristics. The results demonstrate the influence of elastomer type, cure temperature, protein loading, and glycine loading on isothermal cure properties. By measuring the cure time required to achieve tan delta values representative of early and late-stage cure conditions, a ratio t(1)/t(2) was defined that allowed the cure characteristics of the various systems to be compared. Sustained in vitro release of BSA from glycine-loaded silicone elastomer covered rod devices was also demonstrated over 14 days. (C) 2010 Wiley Periodicals, Inc. J Appl Polym Sci 116: 2320-2327, 2010
Resumo:
Contamination of medical devices with bacteria such as Meticillin resistant Staphylococcus aureus (MRSA) is of great clinical concern. Poly(vinyl chloride) is widely used in the production of medical devices, such as catheters. The flexibility of catheter tubing is derived from the addition of plasticisers. Here, we report the design of two dual functional ionic liquids, 1-ethylpyridinium docusate and tributyl(2-hydroxyethyl)phosphonium docusate, which uniquely provide a plasticising effect, and exhibit antimicrobial and antibiofilm-forming activity to a range of antibiotic resistant bacteria. The plasticisation of poly(vinyl chloride) was tailored as a function of ionic liquid concentration. The effective antimicrobial behaviour of both ionic liquids originates from the chemical structure of the anion or cation and is not limited to the length of the alkyl chain on the anion/cation. The design approach adopted will be useful in developing ionic liquids as multi-functional additives for polymers.