118 resultados para Mathematics(all)
Resumo:
A bounded linear operator $T$ on a Banach space $X$ is called frequently hypercyclic if there exists $x\in X$ such that the lower density of the set $\{n\in\N:T^nx\in U\}$ is positive for any non-empty open subset $U$ of $X$. Bayart and Grivaux have raised a question whether there is a frequently hypercyclic operator on any separable infinite dimensional Banach space. We prove that the spectrum of a frequently hypercyclic operator has no isolated points. It follows that there are no frequently hypercyclic operators on all complex and on some real hereditarily indecomposable Banach spaces, which provides a negative answer to the above question.
Resumo:
We construct a bounded linear operator on a separable, reflexive and strictly convex Banach space whose resolvent norm is constant in a neighbourhood of zero.
Resumo:
Let D be the differentiation operator Df = f' acting on the Fréchet space H of all entire functions in one variable with the standard (compact-open) topology. It is known since the 1950’s that the set H(D) of hypercyclic vectors for the operator D is non-empty. We treat two questions raised by Aron, Conejero, Peris and Seoane-Sepúlveda whether the set H(D) contains (up to the zero function) a non-trivial subalgebra of H or an infinite-dimensional closed linear subspace of H. In the present article both questions are answered affirmatively.
Resumo:
Workspace analysis and optimization are important in a manipulator design. As the complete workspace of a 6-DOF manipulator is embedded into a 6-imensional space, it is difficult to quantify and qualify it. Most literatures only considered the 3-D sub workspaces of the complete 6-D workspace. In this paper, a finite-partition approach of the Special Euclidean group SE(3) is proposed based on the topology properties of SE(3), which is the product of Special Orthogonal group SO(3) and R^3. It is known that the SO(3) is homeomorphic to a solid ball D^3 with antipodal points identified while the geometry of R^3 can be regarded as a cuboid. The complete 6-D workspace SE(3) is at the first time parametrically and proportionally partitioned into a number of elements with uniform convergence based on its geometry. As a result, a basis volume element of SE(3) is formed by the product of a basis volume element of R^3 and a basis volume element of SO(3), which is the product of a basis volume element of D^3 and its associated integration measure. By this way, the integration of the complete 6-D workspace volume becomes the simple summation of the basis volume elements of SE(3). Two new global performance indices, i.e., workspace volume ratio Wr and global condition index GCI, are defined over the complete 6-D workspace. A newly proposed 3 RPPS parallel manipulator is optimized based on this finite-partition approach. As a result, the optimal dimensions for maximal workspace are obtained, and the optimal performance points in the workspace are identified.
Resumo:
The main result of the note is a characterization of 1-amenability of Banach algebras of approximable operators for a class of Banach spaces with 1-unconditional bases in terms of a new basis property. It is also shown that amenability and symmetric amenability are equivalent concepts for Banach algebras of approximable operators, and that a type of Banach space that was long suspected to lack property A has in fact the property. Some further ideas on the problem of whether or not amenability (in this setting) implies property A are discussed.
Resumo:
We discuss necessary as well as sufficient conditions for the second iterated local multiplier algebra of a separable C*-algebra to agree with the first.
Resumo:
The design of medical devices could be very much improved if robust tools were available for computational simulation of tissue response to the presence of the implant. Such tools require algorithms to simulate the response of tissues to mechanical and chemical stimuli. Available methodologies include those based on the principle of mechanical homeostasis, those which use continuum models to simulate biological constituents, and the cell-centred approach, which models cells as autonomous agents. In the latter approach, cell behaviour is governed by rules based on the state of the local environment around the cell; and informed by experiment. Tissue growth and differentiation requires simulating many of these cells together. In this paper, the methodology and applications of cell-centred techniques-with particular application to mechanobiology-are reviewed, and a cell-centred model of tissue formation in the lumen of an artery in response to the deployment of a stent is presented. The method is capable of capturing some of the most important aspects of restenosis, including nonlinear lesion growth with time. The approach taken in this paper provides a framework for simulating restenosis; the next step will be to couple it with more patient-specific geometries and quantitative parameter data.
Resumo:
Building on a proof by D. Handelman of a generalisation of an example due to L. Fuchs, we show that the space of real-valued polynomials on a non-empty set X of reals has the Riesz Interpolation Property if and only if X is bounded.
Resumo:
We continue our study of tensor products in the operator system category. We define operator system quotients and exactness in this setting and refine the notion of nuclearity by studying operator systems that preserve various pairs of tensor products. One of our main goals is to relate these refinements of nuclearity to the Kirchberg conjecture. In particular, we prove that the Kirchberg conjecture is equivalent to the statement that every operator system that is (min,er)-nuclear is also (el,c)-nuclear. We show that operator system quotients are not always equal to the corresponding operator space quotients and then study exactness of various operator system tensor products for the operator system quotient. We prove that an operator system is exact for the min tensor product if and only if it is (min,el)-nuclear. We give many characterizations of operator systems that are (min,er)-nuclear, (el,c)-nuclear, (min,el)-nuclear and (el,max)-nuclear. These characterizations involve operator system analogues of various properties from the theory of C*-algebras and operator spaces, including the WEP and LLP.
Resumo:
We prove that a continuous linear operator T on a topological vector space X with weak topology is mixing if and only if the dual operator T' has no finite dimensional invariant subspaces. This result implies the characterization of hypercyclic operators on the space $\omega$ due to Herzog and Lemmert and implies the result of Bayart and Matheron, who proved that for any hypercyclic operator T on $\omega$, $T\oplus T$ is also hypercyclic.
Resumo:
A quadratic semigroup algebra is an algebra over a field given by the generators x_1, . . . , x_n and a finite set of quadratic relations each of which either has the shape x_j x_k = 0 or the shape x_j x_k = x_l x_m . We prove that a quadratic semigroup algebra given by n generators and d=(n^2+n)/4 relations is always infinite dimensional. This strengthens the Golod–Shafarevich estimate for the above class of algebras. Our main result however is that for every n, there is a finite dimensional quadratic semigroup algebra with n generators and d_n relations, where d_n is the first integer greater than (n^2+n)/4 . That is, the above Golod–Shafarevich-type estimate for semigroup algebras is sharp.
Resumo:
We determine the cyclic behaviour of Volterra composition operators, which are defined as $(V_\phif)(x) =\int_0^{\phi(x)}f(t) dt$, $f ? L^p[0, 1]$, 1\leq p <\infty$,
where $?$ is a measurable self-map of [0, 1]. The cyclic behaviour of $V_\phi$ is essentially determined by the behaviour of the inducing symbol $\phi$ at 0 and at 1. As a particular result, we provide new examples of quasinilpotent supercyclic operators, which extend and complement previous ones of Hector Salas.