94 resultados para MITOCHONDRIAL 16S


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The resolution of evolutionary relationships among deep-sea incirrate octopuses has been hindered by the paucity of individuals available for morphological studies and by the lack of tissue samples preserved using fixatives compatible with simple DNA extraction techniques. Evolutionary relationships from 11 species of deep-sea incirrate octopuses were investigated using 2392 base pairs (bp) of DNA from four mitochondrial genes (12S rDNA, 16S rDNA, cytochrome c oxidase subunit III, and cytochrome b) and the nuclear gene, rhodopsin. Morphological examination of these species was also undertaken. Molecular analyses distinguish a species of octopus from hydrothermal vents at Manus Basin from the vent octopodid Vulcanoctopus hydrothermalis known from vents on the East Pacific Rise. Both are herein considered members of the clade currently assigned the name Benthoctopus, although taxonomic implications preclude formally naming Vulcanoctopus as a junior synonym. Morphological investigations led to the conclusion that Benthoctopus macrophallus is a junior synonym of Benthoctopus yaquinae. An amended diagnosis of Benthoctopus is provided with additional information on male reproductive characteristics. Copyright © 2009 · Magnolia Press.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mitochondrial complex I (NADH:ubiquinone oxidoreductase) is a key enzyme in cellular energy metabolism and provides approximately 40% of the proton-motive force that is utilized during mitochondrial ATP production. The dysregulation of complex I function – either genetically, pharmacologically, or metabolically induced – has severe pathophysiological consequences that often involve an imbalance in the production of reactive oxygen species (ROS). Slow transition of the active (A) enzyme to the deactive, dormant (D) form takes place during ischemia in metabolically active organs such as the heart and brain. The reactivation of complex I occurs upon reoxygenation of ischemic tissue, a process that is usually accompanied by an increase in cellular ROS production. Complex I in the D-form serves as a protective mechanism preventing the oxidative burst upon reperfusion. Conversely, however, the D-form is more vulnerable to oxidative/nitrosative damage. Understanding the so-called active/deactive (A/D) transition may contribute to the development of new therapeutic interventions for conditions like stroke, cardiac infarction, and other ischemia-associated pathologies. In this review, we summarize current knowledge on the mechanism of A/D transition of mitochondrial complex I considering recently available structural data and site-specific labeling experiments. In addition, this review discusses in detail the impact of the A/D transition on ROS production by complex I and the S-nitrosation of a critical cysteine residue of subunit ND3 as a strategy to prevent oxidative damage and tissue damage during ischemia–reperfusion injury.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mesenchymal stromal cells (MSC) have been reported to improve bacterial clearance in pre-clinical models of Acute Respiratory Distress Syndrome (ARDS) and sepsis. The mechanism of this effect is not fully elucidated yet. The primary objective of this study was to investigate the hypothesis that the anti-microbial effect of MSC in vivo depends on their modulation of macrophage phagocytic activity which occurs through mitochondrial transfer. We established that selective depletion of alveolar macrophages (AM) with intranasal (IN) administration of liposomal clodronate resulted in complete abrogation of MSC anti-microbial effect in the in vivo model of E.coli pneumonia. Furthermore, we showed that MSC administration was associated with enhanced AM phagocytosis in vivo. We showed that direct co-culture of MSC with monocyte-derived macrophages (MDMs) enhanced their phagocytic capacity. By fluorescent imaging and flow cytometry we demonstrated extensive mitochondrial transfer from MSC to macrophages which occurred at least partially through TNT-like structures. We also detected that lung macrophages readily acquire MSC mitochondria in vivo, and macrophages which are positive for MSC mitochondria display more pronounced phagocytic activity. Finally, partial inhibition of mitochondrial transfer through blockage of TNT formation by MSC resulted in failure to improve macrophage bioenergetics and complete abrogation of the MSC effect on macrophage phagocytosis in vitro and the anti-microbial effect of MSC in vivo.

Collectively, this work for the first time demonstrates that mitochondrial transfer from MSC to innate immune cells leads to enhancement in phagocytic activity and reveals an important novel mechanism for the anti-microbial effect of MSC in ARDS.