102 resultados para MICROBIAL UREASES
Resumo:
Purpose: To assess the bacterial contamination risk in cataract surgery associated with mechanical compression of the lid margin immediately after sterilization of the ocular surface.
Setting: Department of Cataract, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.
Design: Prospective randomized controlled double-masked trial.
Methods: Patients with age-related cataract were randomly assigned to 1 of 2 groups. In Group A (153 eyes), the lid margin was compressed and scrubbed for 360 degrees 5 times with a dry sterile cotton-tipped applicator immediately after ocular sterilization and before povidone-iodine irrigation of the conjunctival sac. Group B (153 eyes) had identical sterilization but no lid scrubbing. Samples from the lid margin, liquid in the collecting bag, and aqueous humor were collected for bacterial culture. Primary outcome measures included the rate of positive bacterial culture for the above samples. The species of bacteria isolated were recorded.
Results: Group A and Group B each comprised 153 eyes. The positive rate of lid margin cultures was 54.24%. The positive rate of cultures for liquid in the collecting bag was significantly higher in Group A (23.53%) than in Group B (9.80%) (P=.001).The bacterial species cultured from the collecting bag in Group B were the same as those from the lid margin in Group A. The positive culture rate of aqueous humor in both groups was 0%.
Conclusion: Mechanical compression of the lid margin immediately before and during cataract surgery increased the risk for bacterial contamination of the surgical field, perhaps due to secretions from the lid margin glands.
Financial Disclosure: No author has a financial or proprietary interest in any material or method mentioned.
Resumo:
In fluvial ecosystems mineral erosion, carbon (C) and nitrogen (N) fluxes are linked via organo-mineral complexation, where dissolved organic molecules bind to mineral surfaces. Biofilms and suspended aggregates represent major aquatic microbial lifestyles whose relative importance changes predictably through fluvial networks. We tested how organo-mineral sorption affects aquatic microbial metabolism, using organo-mineral particles containing a mix of 13C, 15N-labelled amino acids. We traced 13C and 15N retention within biofilm and suspended aggregate biomass and its mineralisation. Organo-mineral complexation restricted C and N retention within biofilms and aggregates and also their mineralisation. This reduced the efficiency with which biofilms mineralise C and N by 30 % and 6 %. By contrast, organo-minerals reduced the C and N mineralisation efficiency of suspended aggregates by 41 % and 93 %. Our findings show how organo-mineral complexation affects microbial C:N stoichiometry, potentially altering the biogeochemical fate of C and N within fluvial ecosystems.
Resumo:
Phosphorus cycling in the biosphere has traditionally been thought to involve almost exclusively transformations of the element in its pentavalent oxidation state. Recent evidence, however, suggests that a significant fraction of environmental phosphorus may exist in a more reduced form. Most abundant of these reduced phosphorus compounds are the phosphonates, with their direct carbon–phosphorus bonds, and striking progress has recently been made in elucidating the biochemistry of microbial phosphonate transformations. These advances are now presented in the context of their contribution to our understanding of phosphorus biogeochemistry and of such diverse fields as the productivity of the oceans, marine methanogenesis and the discovery of novel microbial antimetabolites.
Resumo:
Organophosphonates are ancient molecules that contain the chemically stable C–P bond, which is considered a relic of the reducing atmosphere on primitive earth. Synthetic phosphonates now have a wide range of applications in the agricultural, chemical and pharmaceutical industries. However, the existence of C–P compounds as contemporary biogenic molecules was not discovered until 1959, with the identification of 2-aminoethylphosphonic acid in rumen protozoa. Here, we review advances in our understanding of the biochemistry and genetics of microbial phosphonate metabolism, and discuss the role of these compounds and of the organisms engaged in their turnover within the P cycle.
Resumo:
It is crucial to understand the microbial community associated with the host when attempting to discern the pathogen responsible for disease outbreaks in scleractinian corals. This study determines changes in the bacterial community associated with Montipora sp. in response to black band disease in Indonesian waters. Healthy, diseased, and dead Montipora sp. (n = 3 for each sample type per location) were collected from three different locations (Pari Island, Pramuka Island, and Peteloran Island). DGGE (Denaturing Gradient Gel Electrophoresis) was carried out to identify the bacterial community associated with each sample type and histological analysis was conducted to identify pathogens associated with specific tissues. Various Desulfovibrio species were found as novelty to be associated with infection samples, including Desulfovibrio desulfuricans, Desulfovibrio magneticus, and Desulfovibrio gigas, Bacillus benzoevorans, Bacillus farraginis in genus which previously associated with pathogenicity in corals. Various bacterial species associated with uninfected corals were lost in diseased and dead samples. Unlike healthy samples, coral tissues such as the epidermis, endodermis, zooxanthellae were not present on dead samples under histological observation. Liberated zooxanthellae and cyanobacteria were found in black band diseased Montipora sp. samples.
Resumo:
Coral diseases are a major factor in the decline of coral reefs worldwide, and a large proportion of studies focusing on disease causation use aquaria to control variables that affect disease occurrence and development. Public aquaria can therefore provide an invaluable resource to study the factors contributing to health and disease. In November 2010 the corals within the main display tank at the Horniman Museum and Gardens, London, UK, underwent a severe stress event due to reduced water quality, which resulted in death of a large number of coral colonies. Three separate colonies of two species of reef coral, Seritopora hystrix and Montipora capricornis showing signs of stress and acute tissue loss were removed from the display tank and placed in a research tank with improved water quality. Both coral species showed a significant difference in 16S rRNA gene bacterial diversity between healthy and stressed states (S. hystrix; ANOSIM, R=0.44, p=0.02 and M. capricornis; ANOSIM, R=0.33, p=0.01), and between the stressed state and the recovering corals. After four months the bacterial communities had returned to a similar state to that seen in healthy corals of the same species. The bacterial communities associated with the two coral species were distinct, despite them
being reared under identical environmental conditions. Despite the environmental perturbation being identical different visual signs were seen in each species and distinctly different bacterial communities associated with the stressed state occurred within them. Recovery of the visually healthy state was associated with a return of the bacterial community, within two months, to the pre-disturbance state. These observations suggest that coral-associated microbial communities are remarkably resilient and return to a very similar stable state following disturbance.
Resumo:
As discussed in Part I, a large accumulation of mammalian faeces at the mire site in the upper Guil Valley near Mt. Viso, dated to 2168cal 14C yr., provides the first evidence of the passage of substantial but indeterminate numbers of mammals within the time frame of the Punic invasion of Italia. Specialized organic biomarkers bound up in a highly convoluted and bioturbated bed constitute an unusual anomaly in a histosol comprised of fibric and hemist horizons that are usually expected to display horizontal bedding. The presence of deoxycholic acid and ethylcoprostanol derived from faecal matter, coupled with high relative numbers of Clostridia 16S rRNA genes, suggests a substantial accumulation of mammalian faeces at the site over 2000years ago. The results reported here constitute the first chemical and biological evidence of the passage of large numbers of mammals, possibly indicating the route of the Hannibalic army at this time. Combined with the geological analysis reported in Part I, these data provide a background supporting the need for further historical archaeological exploration in this area.
Resumo:
Sorption of organic molecules to mineral surfaces is an important control upon the aquatic carbon (C) cycle. Organo-mineral interactions are known to regulate the transport and burial of C within inland waters, yet the mechanisms that underlie these processes are poorly constrained. Streamwater contains a complex and dynamic mix of dissolved organic compounds that coexists with a range of organic and inorganic particles and microorganisms. To test how microbial metabolism and organo-mineral complexation alter amino acid and organic carbon fluxes we experimented with 13C-labelled amino acids and two common clay minerals (kaolinite and montmorillonite). The addition of 13C-labelled amino acids stimulated increased microbial activity. Amino acids were preferentially mineralized by the microbial community, concomitant with the leaching of other (non-labelled) dissolved organic molecules that were removed from solution by clay-mediated processes. We propose that microbial processes mediate the formation of organo-mineral particles in streamwater, with potential implications for the biochemical composition of organic matter transported through and buried within fluvial environments.
Resumo:
Acid stimulated accumulation of insoluble phosphorus within microbial cells is highly beneficial to wastewater treatment but remains largely unexplored. Using single cell analyses and next generation sequencing, the response of active polyphosphate accumulating microbial communities under conditions of enhanced phosphorus uptake under both acidic and aerobic conditions was characterised. Phosphorus accumulation activities were highest under acidic conditions (pH 5.5 > 8.5), where a significant positive effect on bioaccumulation was observed at pH 5.5 when compared to pH 8.5. In contrast to the Betaproteobacteria and Actinobacteria dominated enhanced biological phosphorus removal process, the functionally active polyP accumulators at pH 5.5 belonged to the Gammaproteobacteria, with key accumulators identified as members of the families Aeromonadaceae and Enterobacteriaceae. This study demonstrated a significant enrichment of key polyphosphate kinase and exopolyphosphatase genes within the community metagenome after acidification, concomitant with an increase in P accumulation kinetics.
Resumo:
The McMurdo Dry Valleys of Antarctica are an extreme polar desert. Mineral soils support subsurface microbial communities and translucent rocks support development of hypolithic communities on ventral surfaces in soil contact. Despite significant research attention, relatively little is known about taxonomic and functional diversity or their inter-relationships. Here we report a combined diversity and functional interrogation for soil and hypoliths of the Miers Valley in the McMurdo Dry Valleys of Antarctica. The study employed 16S rRNA fingerprinting and high throughput sequencing combined with the GeoChip functional microarray. The soil community was revealed as a highly diverse reservoir of bacterial diversity dominated by actinobacteria. Hypolithic communities were less diverse and dominated by cyanobacteria. Major differences in putative functionality were that soil communities displayed greater diversity in stress tolerance and recalcitrant substrate utilization pathways, whilst hypolithic communities supported greater diversity of nutrient limitation adaptation pathways. A relatively high level of functional redundancy in both soil and hypoliths may indicate adaptation of these communities to fluctuating environmental conditions.
Resumo:
The source, concentration, and potential impact of sewage discharge and incomplete organic matter (OM) combustion on sedimentary microbial populations were assessed in Dublin Bay, Ireland. Polycyclic aromatic hydrocarbons (PAHs) and faecal steroids were investigated in 30 surface sediment stations in the bay. Phospholipid fatty acid (PLFA) content at each station was used to identify and quantify the broad microbial groups present and the impact of particle size, total organic carbon (%TOC), total hydrogen (%H) and total nitrogen (%N) was also considered. Faecal sterols were found to be highest in areas with historical point sources of sewage discharge. PAH distribution was more strongly associated with areas of deposition containing high %silt and %clay content, suggesting that PAHs are from diffuse sources such as rainwater run-off and atmospheric deposition. The PAHs ranged from 12 to 3072 ng/g, with 10 stations exceeding the suggested effect range low (ERL) for PAHs in marine sediments. PAH isomer pair ratios and sterol ratios were used to determine the source and extent of pollution. PLFAs were not impacted by sediment type or water depth but were strongly correlated to, and influenced by PAH and sewage levels. Certain biomarkers such as 10Me16:0, i17:0 and a17:0 were closely associated with PAH polluted sediments, while 16:1ω9, 16:1ω7c, Cy17:0, 18:1ω6, i16:0 and 15:0 all have strong positive correlations with faecal sterols. Overall, the results show that sedimentary microbial communities are impacted by anthropogenic pollution.
Resumo:
Understanding the mechanism associated with rates of weathering and evolution of rocks→sediment→soil→paleosol in alpine environments raises questions related to the impact of microbial mediation versus various diverse abiotic chemical/physical processes, even including the overall effect of cosmic impact/airburst during the early stage of weathering in Late Glacial (LG) deposits. This study is of a chronosequence of soils/paleosols, with an age range that spans the post–Little Ice Age (post-LIA; <150 yr), the Little Ice Age (LIA; AD 1500–1850), the middle Neoglacial (∼3 ka)–Younger Dryas (YD; <12.8 ka), and the LG (<15 ka). The goal is to elicit trends in weathering, soil morphogenesis, and related eubacterial population changes over the past 13–15 k.yr. The older LG/YD paleosols in the sequence represent soil morphogenesis that started during the closing stage of Pleistocene glaciation. These are compared with undated soils of midto late Neoglacial age, the youngest of LIA and post-LIA age. All profiles formed in a uniform parentmaterial ofmetabasalt composition and in moraine, rockfall, protalus, and alluvial fan deposits. Elsewhere in Europe,North America, and Asia, the cosmic impact/airburst event at 12.8 ka often produced a distinctive, carbon-rich “black mat” layer that shows evidence of high-temperature melting. At this alpine site, older profiles of similar LG age contain scorched and melted surface sediments that are otherwise similar in composition to the youngest/thinnest profiles developing in the catchment today. Moreover, microbial analysis of the sediments offers new insight into the genesis of these sediments: the C and Cu (u = unweathered) horizons in LG profiles present at 12.8 ka (now Ah/Bw) show bacterial population structures that differ markedly from recent alluvial/protalus sample bacterial populations. We propose here that these differences are, in part, a direct consequence of the age/cosmic impact/weathering processes that have occurred in the chronosequence. Of the several questions that emerge from these sequences, perhaps the most important involve the interaction of biotic-mineral factors, which need to be understood if we are to generally fully appreciate the role played by microbes in rock weathering.